人教课标版课件§26.3实际问题与二次函数(第3课时)_第1页
人教课标版课件§26.3实际问题与二次函数(第3课时)_第2页
人教课标版课件§26.3实际问题与二次函数(第3课时)_第3页
人教课标版课件§26.3实际问题与二次函数(第3课时)_第4页
人教课标版课件§26.3实际问题与二次函数(第3课时)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、26.3 实际问题与二次函数(第3课时),长汀县河田中学 丘建旺,活动一:一抛物线型拱桥,建立了如图所示的直角坐标系后,抛物线的表达式为:y=-1/25x2+16 (1)拱桥的跨度是多少? (2) 拱桥最高点离水面几米? (3) 一货船高为12米,货船宽至少小于多少米时,才能安全通过?,解:(1) 令-1/25x2+16=0,解得X1=20,X2=-20, A(-20,0) B(20,0)AB=40,即拱桥的跨度为40米。,(2)令x=0,得y=16, 即拱桥最高点离地面16米,(3)令-1/25x2+16=12,解得X1=-10,X2 =10, x1-x2=20.即货船宽应小于20米时,货船

2、才能安全通过。,课前热身,一、根据已知函数的表达式解决实际问题,活动二、如图是抛物线形拱桥,当水面宽4m时,桥洞顶部离水面2m。 (1)求该抛物线的函数解析式。 (2)若水面下降1米,水面宽增加多少米?,M,2m,首先要建立适当的平面直角坐标系,(-2,0),(2,0),(0,2),二、根据实际问题建立函数的表达式解决实际问题,平面直角坐标系建立的不同,所得的抛物线的解析式相同吗? 最终的解题结果一样 哪一种取法求得的函数解析式最简单?,解法二:(1)以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系。设二次函数的解析式为y=ax2(a0)抛物线经过点(2,-2),可得,a=-0.5

3、抛物线的解析式为:y=-0.5x2,1m,(X1,-3),(X2,-3),活动三:试一试如图所示,有一座抛物线型拱桥,在正常水位AB时,水面宽20米,水位上升3米,就达到警戒线CD,这时水面宽为10米。 (1)求抛物线型拱桥的解析式。 (2)若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始, 在持续多少小时才能达 到拱桥顶? (3)若正常水位时,有一艘 宽8米,高2.5米的小船 能否安全通过这座桥?,如图是某公园一圆形喷水池,水流在各方向沿形 状相同的抛物线落下。建立如图所示的坐标系,如果喷头所在 处A(0,1.25),水流路线最高处B(1,2.25),求该抛物线 的解析式。如果不考虑其他因素,那么水池的半径至少要多少 米,才能使喷出的水流不致落到池外。,当堂训练,实际问题,抽象,转化,数学问题,运用,数学知识,问题的解决,谈谈你的学习体会,解题步骤: 1、分析题意,把实际问题转化为数学问题,画出图形。 2、根据已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论