2020年高考数学 考点分析与突破性讲练 专题21 不等式及解法 理(通用)_第1页
2020年高考数学 考点分析与突破性讲练 专题21 不等式及解法 理(通用)_第2页
2020年高考数学 考点分析与突破性讲练 专题21 不等式及解法 理(通用)_第3页
2020年高考数学 考点分析与突破性讲练 专题21 不等式及解法 理(通用)_第4页
2020年高考数学 考点分析与突破性讲练 专题21 不等式及解法 理(通用)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、主题21不平等及其解决方法一、考试要求:1.理解现实世界和日常生活之间有很多不同的关系,理解不等式(组)的实际背景。2.一阶二次不等式模型在实际问题的方案中抽象。3.通过函数图像理解一阶二次不等式与相应的二次函数、一阶二次方程之间的关系。4.解一阶二次不等式,设计给定一阶二次不等式解的方块图。二、概念把握和解决问题的注意事项:1.比较两个数字(样式)大小的两种方法2.先决条件和结合问题。要具有不等式的性质,分别判断pq和qp是否正确,注意特殊值方法的应用。3.与命题真假判断相关的问题。解决这种问题,除了根据不等式的性质解决外,还经常采用特殊值验证方法。4.解一阶二次不等式的一般方法和步骤(1)

2、化:将不等式变换为次系数大于0的标准形式。(2)判断:计算相应方程的熊猫,根据判别式判断方程是否有实际根(没有实际根时,不等式解为r或)。(3)求:求相应一阶二次方程的根。(4)写:“大于两边,小于中间”,写不等式的解集。5.解决带参数的一阶二次不等式:(1)如果第二项包含小于或等于0、0或0的参数,则将不等式或第二项系数转换为正形式。(2)判断方程的根,讨论判别和0的关系。(3)确定无根时是否可以直接写解集,当方程有两个根时讨论两个大小关系,确定解集形式。三、高考试题案例分析:范例1。(2020年山东圈)如果是这样,以下不等式成立(A) (B)(C) (D)回答 b范例2 .(2020天津圈

3、)如果x的不等式在r上保持不变,则a的值范围为(A)(B)(C)(D)回答 a分析不平等是(*)。(*)样式是,取等号的时候,(当取等号的时候),所以,(*)样式是,然后(当时取等号),(当时取等号),所以,总而言之,请选择a。范例3 .(2020高考新课程标准1)那么()(A) (B) (C) (D)回答 c解析:选择特殊值方法、顺序、选项a错误、选项b错误、选项c正确、选项d错误、c。范例4 .(2020年高考山东省权)不等式的解法是()(A)(-,4) (B)(-,1) (C)(1,4) (D)(1,5)回答 a范例5 .(2020高考江苏圈)不等式的解法是_ _ _ _ _ _ _ _

4、 _ _ _。回答 (-1,2)疑难解答:解决集(-1,2)范例6 .(2020课表III)如果设置a=log0.20.3,b=log20.3,则为()a . a b ab 0b . ab a b 0c . a b 0 Abd . ab 0 a b回答 b分析:a=log 0 . 20 . 3=,b=log20.3=,=,而且,和ab a b 0。选择:b范例7 .(2020天津圈)如果a=log2e,b=ln2,c=log,则a,b,c的大小关系为()A.a b cb.b a cc.c b ad.c a b回答 d不等式和解决方案练习一、选择题1.如果已知a,b是实数,则“a 0和b 0”为

5、“a b 0和ab 0”。()A.完全不必要的条件b .必要的不完全条件C.先决条件d .充分或不必要的条件回答 cA b 0与知道a b 0和a 0的b 0相同,因此a 0和b 0是a b 0和ab 0的先决条件。2.如果a、br和ab,则以下不等式始终成立()A.a2b2b.1C.2a2bd。LG (a-b) 0回答 c分析 a=-1,b=-2,排除a、b、D. C3.已知集a=,b=0,1,2,3,a/b=()A.1,2 B. 0,1,2C.D. 1,2,3回答 a分析a= x | 0 x2 ,ab= 1,2,因此选择a。4.如果知道x,yr,则 x y 的先决条件是()A.2x 2yb

6、。LG x lgyC. d.x2 y2回答 a5.如果x的不等式ax-b 0的解集为()A.(-,-1) (3,) B. (1,3)C.(-1,3) D. (-,1) (3,)回答 cx的不等式ax-b 0,ax b的解集为(1,),a=b 0,不等式(ax b) (x-3) 0表示(x 1) (x-3) 0,-1 x 3,不等式的答案是(-1,3)。C.6.如果设置a并且b都是实数,则“a|b| b |”是“a3 B3”的()A.完全不必要的条件b .必要的不完全条件C.先决条件d .充分或不必要的条件回答 a分析 a|b| b | a b可以发布,a3 B3对于A3 B3,存在a b,但b

7、 a | b |不为真,因为“a | b |”是“a3 B3”的充分不必要条件,所以a7.mr、a b 1、f (x)=、f(a)和f(b)的大小关系为f(x)=A.f (a) f (b) b.f (a) f (b)C.f (a) f (b) D .不确定回答 c分析-f(a)=,f (b)=,f(a)-f(b)=-=m2=m2=m2,M=0时f(a)=f(b);M0表示m2 0,此外,a b 1,f(a)f(b)。总之,f (a) f (b)。8如果已知实数a、b和c满足b c=6-4a 3a 2,c-b=4-4a a2,则a、b和c的大小关系为()A.c b a b.a c bC.c b

8、ad.a c b回答 a9.如果0 a b已知且a b=1,则以下不等式中的正确一个为()A.log2a 0b.2a-b C.log2a log2b -2d.2 回答 c疑难解答0 a 1,此时log2a 0,a错误;因为0 a 1,0 b 1,所以-1 -b 0和a b,所以-1 a-b 0,所以2a-b 1,b错误;由于0 a 2=2,因此2 22=4,d错误;在A b=1 2中,A b ,因此log2a log2b=log2 (ab) log2=-2,c是正确的。10.集合a=,实数a的值集合为()A.如果a | 00在宗地(1,4)内找到解决方案,则实数a的值范围为()A.(-,-2)

9、 B. (-2,)C.(-6,) D. (-,-6)回答 a12.已知函数f(x)=-x2 ax B2-b 1(a-r,b-r)对任何实际x而言,f (1-x)=f (1 x)有效,x-1A.(-1,0) B. (2,)C.(-,-1) (2,) D .不确定回答 cF (1-x)=镜像图像线x=1,也就是说,F (1-x)=f (1 x),也就是说,=1,a=2。F(x)洞口下降了。因此,当x-1,1时,f(x)是增量函数。因此,f (x) min=f (-1)=-1-2 B2-b 1=B2-b-2,F (x) 0总是成立的。B2-b-2 0总是成立的。解决方案b 2。二、填空13.a,b为

10、实数,ab,a ”“”或“=”)【回答】 :分析-b,a 0,-a-=0,-500;a 2 B-。14.如果0 a 0的解决集为_ _ _ _ _ _ _ _。答案。【】原始不等式可以转换为(x-a) 0,0 a 1表示a , a x .15.在r中定义运算:=ad-BC。如果不等式1对对于任意实数x是常量,则实数a的最大值为_ _ _ _ _ _ _ _ _ _ _ _ _ _。答案。【】16.不等式a2 8 B2b(a b)对于任意a,如果br始终存在,则实数的范围为_ _ _ _ _ _ _ _ _ _ _ _ _ _ _。回答 -8,4因为a2 8 B2b(a b)对于任意a的br是常

11、量,因此,a2 8 B2-b(a b)0对于任何a都是恒定的,即a2- ba (8-) B2 0是恒定的。可以从二次不等式的性质中得到,=2 B2 4(-8)B2=B2(2 4-32)0,所以( 8) (-4) 0,解决-84。第三,解决问题17.解以下不等式。(1)3 2 x-x20;(2) x2-(a 1) x A0。回答 1 |-1 | x | 3 。分析 (1)原始不等式为x2-2x-3 0,(x-3) (x 1) 0,所以不等式的答案是 x |-1x3 。(2)原始不等式为(x-a) (x-1) 0,A1时,原始不等式的解集为(1,a);当A=1时,原始不等式的解决方案集为:A1时,

12、原始不等式的解集为(a,1)。18.不等式ax2 5x-2 0的一组解决方案。(1)实数a的值;(2)求不等式ax2-5x a2-1 0的解集。回答 (1) a=-2。(2)19.已知不等式mx2-2x-m 1 0,如果所有实数x都存在实数m,并且不等式是常量?如果存在,则查找m的值范围。如果不存在,请说明原因。【答案】不存在不等式mx2-2x-m 1 0始终成立。也就是说,函数f (x)=mx2-2x-m 1的图像都在x轴之下。M=0时,如果1-2x 对问题不满意。如果M0,则函数f (x)=mx2-2x-m 1是二次函数。开口必须向下满足,例如Mx2-2x-m 1=0不等式组的解集没有空集

13、,即m解。综上所述,这样的实数m使不等式恒定。20.函数f (x)=MX-MX-1。对于x-1,3、f (x)-m 5常量,获取m的值范围。答案。【】分析必须使f (x)-m 5抗x1,3,即m m-60抗x1,3。有两种方法:波1:命令g (x)=m m-6,x-1,3。在M0中,g(x)是1,3的附加函数。因此,g (x) max=g (3) 7m-60,所以m,所以00)的最小值是;(2)对于任意x0,2,不等式f(x)a成立,试图求出a的值范围。回答 (1)-2。(2)分析 (1)根据问题的含义,y=x -4。因为X0,所以x2,当X=时(即x=1时),等号才成立,因此y 2。因此,如果x=1,则y=的最小值为-2。(2) f (x)-a=x2-2ax-1,因此,如果“x0,2,不等式f(x)a成立,则“x2-2ax-10必须在0,2中恒定成立。我想您可以设定G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论