版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教科书版本:人教版八年级数学(上),12.3 角的平分线的性质(1),学校:惠东多祝中学,科任教师:刘泳宁,自学提纲,1.角平分仪为什么能平分一个角?,2.如何画一个角的平分线?,4.角的平分线的性质是什么?如何证明?用几何符号如何表示?,6.课本中利用角平分线的性质解决了一个什么实际问题?,3.如何通过作一个平角的平分线得到直线的垂线?,5.证明一个几何命题的步骤是什么?,不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?,再打开纸片 ,看看折痕与这个角有何关系?,(对折),情境问题,1、如图,是一个角平分仪,其中AB=AD,BC=DC。 将点A放在角的顶点,AB和AD沿着角
2、的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?,情境问题,A,D,B,C,E,如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?,2、证明: 在ACD和ACB中 AD=AB(已知) DC=BC(已知) CA=CA(公共边) ACD ACB(SSS) CAD=CAB(全等三角形的 对应边相等) AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器),O,探究新知,N,O,M,C,E,作射线OC,射线OC即为所求.,温馨提示: 作角平分线是最基本的尺规作图,大家一定要掌握噢!,试一试由上面的探究可以得出作已知角的
3、平分线的方法.已知:AOB. 求作:AOB的平分线.,作法: 以O为圆心,任意长为半径作弧,交OA于M,交OB于N.,M,N,C,证明:连结MC,NC由作法知:,M,N,C,1平分平角AOB 2通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系? 3结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。,实践应用(1),探究角平分线的性质,(1)实验:将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,(2)猜想:角的平分线上的点到角的两边的距离相等.,证明:OC平分
4、 AOB (已知) 1= 2(角平分线的定义) PD OA,PE OB(已知) PDO= PEO(垂直的定义) 在PDO和PEO中 PDO= PEO(已证) 1= 2 (已证) OP=OP (公共边) PDO PEO(AAS) PD=PE(全等三角形的对应边相等),已知:如图,OC平分AOB,点P在OC上,PDOA于点D,PEOB于点E. 求证:PD=PE,探究角平分线的性质,(3)验证猜想,角平分线上的点到角两边的距离相等。,(4)得到角平分线的性质:,利用此性质怎样书写推理过程?(几何符号语言),角平分线的性质,定理:角的平分线上的点到角的两边的距离相等,用符号语言表示为:,1= 2,PD
5、 OA ,PE OB PD=PE.,题设:一个点在一个角的平分线上,结论:它到角的两边的距离相等,如图,E是AOB的角平分线OC上的一点, EMOB垂足为M,且EM=3cm,求点E 到OA的距离,分析:点E 到OA的距离是过点E作OA的垂线段,再根据角的平分线的性质,可知点E到OA的距离。,解:过E作ENOA垂足为N E是AOB的角平分线上的一点, EMOB, ENOA, EM=EN 又 EM=3cm, EN=3cm 即点E 到OA的距离为3cm。,E,课堂练习,M,思考: 要在区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处米,应建在何处?(比例尺 1:20 000),s,公
6、路,铁路,解: 作夹角的角平分线OC,截取 OD=2.5cm ,D即为所求。,D,C,s,公路,铁路,如图:在ABC中,C=90 AD是BAC的平分线,DEAB于E,F在AC上,BD=DF; 求证:CF=EB,实践应用(2),分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即RtCDF RtEDB.,现已有一个条件BD=DF(斜边相等),还需要我们找什么条件,DC=DE (因为角的平分线的性质) 再用HL证明.,试试自己写证明。你一定行!,证明: AD平分C, D是AD上一点(已知),如图:在ABC中,C=90 AD是BAC的平分线,DEAB于E,F在AC上,BD=DF;
7、求证:CF=EB,DEAB,DCAC(已知),在RtCDF和RtBDE 中 BD=DF (已知) DC=DE(已证),Rt CDFRtFDB (HL),CFB(全等三角形对应边相等),DCD(角平分线的性质),1.如图,OC是AOB的平分线, PD=PE,PDOA,PEOB,2.如图,在ABC中,ACBC,AD为BAC的平分线,DEAB,AB7,AC3,求BE= CM.,4,3.在RtABC中,BD平分ABC, DEAB于E,则: 图中相等的线段有 ;相等的角有: 。 哪条线段与DE相等?为什么? 若AB10,BC8,AC6, 求BE,AE的长和AED的周长。,BE=BC,DE=DC,ABD= CBD,BED= AED= C,6,8,10,已知:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC,垂足分别是E,F. 求证:EB=FC.,证明: AD平分CAB DEAB ,DFAC(已知) DE=DF (角平分线的性质) 在tBED和RtCFD中, BD=CD (已证) DE=DF (已知) Rt BED RtCFD (HL) BE=FC (全等三角形对应边相等),回味无穷,2.定理 角平分线上的点到这个角的两边距离相等. OC是AOB的平分线, P是OC上任意一点PDOA,PEOB,垂足分别是D,E(已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030燃气轮机行业稳定性评估产业链供需分析市场发展规划
- 褐煤开采效率优化研究-洞察及研究
- 面向不确定性环境下的离散化决策支持-洞察及研究
- 交互式视觉快感设计-洞察及研究
- 海洋生态系统中的人类活动影响研究-洞察及研究
- 黏液层厚度与药物释放-洞察及研究
- 高分子电动汽车部件研发-洞察及研究
- 2026年投资风险管理及策略选择试题
- 2026年绿色能源技术创新与市场前景分析考试题
- 2026年心理健康咨询师职业能力测试题库
- DB11∕T 637-2024 房屋结构综合安全性鉴定标准
- 2025年新疆中考数学真题试卷及答案
- 2025届新疆乌鲁木齐市高三下学期三模英语试题(解析版)
- DB3210T1036-2019 补充耕地快速培肥技术规程
- 混动能量管理与电池热管理的协同优化-洞察阐释
- T-CPI 11029-2024 核桃壳滤料标准规范
- 统编版语文三年级下册整本书阅读《中国古代寓言》推进课公开课一等奖创新教学设计
- 《顾客感知价值对绿色酒店消费意愿的影响实证研究-以三亚S酒店为例(附问卷)15000字(论文)》
- 劳动仲裁申请书电子版模板
- 赵然尊:胸痛中心时钟统一、时间节点定义与时间管理
- 家用燃气灶结构、工作原理、配件介绍、常见故障处理
评论
0/150
提交评论