版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、分式方程及其解法,王屋一中 常德新,学习目标: 了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。,问题导入,一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行120千米所用时间,与以最大航速逆流航行80千米所用时间相等,江水的流速为多少?,分析:设江水的流速为x千米时,填空: 轮船顺流航行速度为千米时,逆流航行 速度为千米时,顺流航行120千米所用 的时间为小时,逆流航行80千米所用时间 为小时。,20+x,20-x,分式方程,像这样,分母里含有未知数的方程叫做分式方程。,以前学过的分母里不含有未知数的方程叫做整式方程。,【分式
2、方程的定义】,分母中含未知数的方程叫做 分式方程.,区别,整式方程的未知数不在分母中 分式方程的分母中含有未知数,判断下列说法是否正确:,(),(),( ),( ),下列方程中,哪些是分式方程?哪些整式方程.,整式方程,分式方程,解:,在方程两边都乘以最简公分母(20+x)(20-x)得,,解这个整式方程,得x=4,120(20-x)=80(20+x),检验:把x= 4 代入原方程中,左边右边,因此x4是原方程的解,分式方程,解分式分式方程的一般思路,整式方程,去分母,两边都乘以最简公分母,探究,下面我们一起研究下怎么样来解分式方程:,【解分式方程】,解:,在方程两边都乘以最简公分母(x+5)
3、(x-5)得,,解这个整式方程,得x=5,x+5=10,再进一步,例2解方程,1、当分式方程含有若干个分式时,通常 可用各个分式的最简公分母同乘方程两边进行去分母。 2、解方程时一定要验根。,为什么会出现增根?,【分式方程的解】,思考,是原分式方程的解呢?,我们来观察去分母的过程,120(20-x)=80(20+x),x+5=10,两边同乘(20+x)(20-x),当x=4时,(20+x)(20-x)0,两边同乘(x+5)(x-5),当x=5时, (x+5)(x-5)=0,分式两边同乘了不为0的式子,所得整式方程的解与 分式方程的解相同.,分式两边同乘了等于0的式子,所得整式方程的解使分母为0
4、,这个整式方程的解就不是原分式方程的解,【分式方程解的检验】,120(20-x)=80(20+x),x+5=10,两边同乘(20+x)(20-x),当x=4时,(20+x)(20-x)0,两边同乘(x+5)(x-5),当x=5时, (x+5)(x-5)=0,分式两边同乘了不为0的式子,所得整式方程的解与 分式方程的解相同.,分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解,解分式方程时,去分母后所得整式方程的解有可能 使原方程的分母为,所以分式方程的解必须检验,怎样检验这个整式方程的解是不是原分式的解?,将整式方程的解代入最简公分母,如果最简公分母的
5、值不为,则整式方程的解是原分式方程的解,否则这个解就不是原分式方程的解,解分式方程的一般步骤,1、 在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2、解这个整式方程. 3、 把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去. 4、写出原方程的根.,解分式方程的思路是:,分式方程,整式方程,去分母,一化二解三检验,【例题】,解 :方程两边同乘以最简公分母(x1) (x2),得,X(x+2)-(x-1)(x+2)=3,解整式方程,得 x = 1,检验:当x = 1 时,(x1) (x2),不是原分式方程的解,原分式方程无解,练习,解分式方程,通过例题的讲解和练习的操作,你能总结出解分式方程的一般步骤吗?,【小结】,解分式方程的一般步骤的框架图:,分式方程,整式方程,a是分式 方程的解,X=a,a不是分式 方程的解,去分母,解整式方程,检验,目标,最简公分 母不为,最简公分 母为,解方程分式方程,(1),(2),(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年海外仓机器人智能维护培训
- 临床试验中动态随机化与中心化伦理审查的协同
- 临床科研资源沉淀的共享模式优化策略
- 临床科室检验科质量改进案例分享会
- 大型体育场馆赛事直播系统施工方案
- 大型会议中心声学装修施工方案
- 临床技能术语的专家共识形成方法
- 临床思维教学中的临床推理训练
- 多台汽车吊防碰撞施工方案
- 临床医学继续教育学分标准化建设路径
- 初中地理八年级《中国的气候特征及其影响》教学设计
- 广州大学《电磁场与电磁波》2023-2024学年第二学期期末试卷
- 中国家居照明行业健康光环境与智能控制研究报告
- 主动防护网系统验收方案
- 医学人文关怀培训课件
- 基于BIM的ZN花园14号住宅楼工程清单与招标控制价编制
- 压缩机操作工岗位操作技能评估
- 2025年小学三年级语文单元测试模拟卷(含答案)
- 河北省石家庄第二中学2025-2026学年高一上数学期末联考试题含解析
- 【必会】自考《管理学原理》13683备考题库宝典-2025核心题版
- 土方施工环保措施方案
评论
0/150
提交评论