




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2015-2016学年四川省内江市高二(上)期末数学试卷(理科)一.选择题(共12小题,每小题5分,共60分)1若一个几何体的正视图是一个三角形,则该几何体不可能是()A圆锥B圆柱C棱锥D棱柱2四川省教育厅为确保我省高考使用全国卷平稳过渡,拟召开高考命题调研会,广泛征求参会的教研员和一线教师的意见,其中教研员有80人,一线教师有100人,若采用分层抽样方法从中抽取9人发言,则应抽取的一线教师的人数为()A3B4C5D63若直线2xy4=0在x轴和y轴上的截距分别为a和b,则ab的值为()A6B2C2D64将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可
2、以自由转动,对指针停留的可能性下列说法正确的是()A一样大B蓝白区域大C红黄区域大D由指针转动圈数决定5若直线x+(1+m)y+m2=0与直线2mx+4y+16=0没有公共点,则m的值是()A2B1C1或2D2或16设,是两个不同的平面,m,n是两条不同的直线,下列命题中正确的是()A若,m,则mB若,m,则mC若m,=n,则mnD若m,m,=n,则mn7内江市某镇2009年至2015年中,每年的人口总数y(单位:万)的数据如下表:年 份2009201020112012201320142015年份代号t0123456人口总数y888991011若t与y之间具有线性相关关系,则其线性回归直线=t
3、+一定过点()A(3,9)B(9,3)C(6,14)D(4,11)8如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,其中茎为十位数,叶为个位数,甲、乙两人得分的中位数为X甲、X乙,则下列判断正确的是()AX乙X甲=5,甲比乙得分稳定BX乙X甲=5,乙比甲得分稳定CX乙X甲=10,甲比乙得分稳定DX乙X甲=10,乙比甲得分稳定9设直线xy+3=0与圆心为O的圆x2+y2=3交于A,B两点,则直线AO与BO的倾斜角之和为()ABCD10为求使不等式1+2+3+n60成立的最大正整数n,设计了如图所示的算法,则图中“”处应填入()Ai+2Bi+1CiDi111在如图所示的几何体中,三棱锥DAB
4、C的各条棱长均为2,OA,OB,OC两两垂直,则下列说法正确的是()AOA,OB,OC的长度可以不相等B直线OB平面ACDC直线OD与BC所成的角是45D直线AD与OB所成的角是4512已知正三角形ABC的边长为2,D是BC边的中点,将三角形ABC沿AD翻折,使,若三棱锥ABCD的四个顶点都在球O的球面上,则球O的表面积为()A7B19CD二填空题(共4小题,共20分)13阅读下面程序若a=4,则输出的结果是14将一颗骰子先后抛掷2次,以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=9的内部的概率为15一个直棱柱被一个平面截去一部分后,剩余部分的三视图如图所
5、示,则该剩余部分的体积为16设点P(x0,1),若在以O为圆心的圆O:x2+y2=4上存在一点Q,使OPQ=30,则x0的取值范围是三解答题(共6小题,共70分)17如图所示,在四棱锥PABCD中,PA底面ABCD,且底面ABCD为正方形,E是PA的中点()求证:PC平面BDE;()求证:平面PAC平面BDE18已知圆C:x2+y24x5=0()判断圆C与圆D:(x5)2+(y4)2=4的位置关系,并说明理由;()若过点(5,4)的直线l与圆C相切,求直线l的方程19随着智能手机等电子产品的普及,“低头族”正成为现代社会的一个流行词在路上、在餐厅里、在公交车上,随处可见低头玩手机的人,这种“低
6、头族现象”冲击了人们面对面交流的温情,也对人们的健康构成一定的影响为此,某报社发起一项专题调查,记者随机采访了M名市民,得到这M名市民每人在一天内低头玩手机的时间(单位:小时),根据此数据作出频数的统计表和频率分布直方图如下:分组频数频率0,0.5)40.100.5,1)mp1,1.5)10n1.5,2)60.152,2.5)40.102.5,3)20.05合计M1()求出表中的M,p及图中a的值;()试估计这M名市民在一天内低头玩手机的平均时间(同一组的数据用该组的中间值作代表);()在所取样本中,从一天内低头玩手机的时间不少于2小时的市民中任取2人,求两人在一天内低头玩手机的时间都在区间2
7、,2.5)内的概率20如图所示,在长方体ABCDA1B1C1D1中,BC=2AB=4,E是A1D1的中点()在平面A1B1C1D1内,请作出过点E与CE垂直的直线l,并证明lCE;()设()中所作直线l与CE确定的平面为,求直线CC1和平面所成角的大小21已知圆C经过点A(1,1)和B(4,2),且圆心C在直线l:x+y+1=0上()求圆C的标准方程;()设M,N为圆C上两点,且M,N关于直线l对称,若以MN为直径的圆经过原点O,求直线MN的方程22如图所示,在四棱锥PABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形()求二面角PABC的大小;()在线段AB上是
8、否存在一点E,使平面PCE平面PCD?若存在,请指出点E的位置并证明,若不存在请说明理由2015-2016学年四川省内江市高二(上)期末数学试卷(理科)参考答案与试题解析一.选择题(共12小题,每小题5分,共60分)1若一个几何体的正视图是一个三角形,则该几何体不可能是()A圆锥B圆柱C棱锥D棱柱【考点】简单空间图形的三视图【分析】圆柱的正视图可能是矩形,可能是圆,不可能是三角形【解答】解:圆锥的正视图有可能是三角形,圆柱的正视图可能是矩形,可能是圆,不可能是三角形,棱锥的正视图有可能是三角形,三棱柱放倒时正视图是三角形,在圆锥、圆柱、棱锥、棱柱中,正视图是三角形,则这个几何体一定不是圆柱故选
9、:B2四川省教育厅为确保我省高考使用全国卷平稳过渡,拟召开高考命题调研会,广泛征求参会的教研员和一线教师的意见,其中教研员有80人,一线教师有100人,若采用分层抽样方法从中抽取9人发言,则应抽取的一线教师的人数为()A3B4C5D6【考点】分层抽样方法【分析】先求出抽样比,再求应抽取的一线教师的人数【解答】解:教研员有80人,一线教师有100人,采用分层抽样方法从中抽取9人发言,应抽取的一线教师的人数为: =5(人)故选:C3若直线2xy4=0在x轴和y轴上的截距分别为a和b,则ab的值为()A6B2C2D6【考点】直线的截距式方程【分析】先将直线的方程化成截距式,结合在x轴和y轴上的截距分
10、别为a和b,即可求出a,b的值,问题得以解决【解答】解:直线2xy4=0化为截距式为+=1,a=2,b=4,ab=2(4)=6,故选:A4将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是()A一样大B蓝白区域大C红黄区域大D由指针转动圈数决定【考点】几何概型【分析】根据矩形的性质和题意得出蓝颜色和白颜色所占区域的角较大,再根据几何概率即可得出答案【解答】解;一个长与宽不等的长方形,沿对角线分成四个区域中蓝颜色和白颜色的角较大,指针指向蓝白区域的可能性大;故选:B5若直线x+(1+m)y+m2=0与直线2mx
11、+4y+16=0没有公共点,则m的值是()A2B1C1或2D2或1【考点】直线的一般式方程与直线的平行关系【分析】利用两条直线平行的充要条件即可得出【解答】解:直线x+(1+m)y+m2=0与直线2mx+4y+16=0没有公共点,两条直线平行两条直线方程分别化为:y=x+,y=mx4,(1+m0),=,4,解得m=1故选:B6设,是两个不同的平面,m,n是两条不同的直线,下列命题中正确的是()A若,m,则mB若,m,则mC若m,=n,则mnD若m,m,=n,则mn【考点】空间中直线与平面之间的位置关系【分析】在A中,m与相交、平行或m;在B中,m或m;在C中,m与n平行或异面;在D中,由直线与
12、平面平行的性质定理得mn【解答】解:由,是两个不同的平面,m,n是两条不同的直线,知:在A中,若,m,则m与相交、平行或m,故A错误;在B中,若,m,则m或m,故B错误;在C中,若m,=n,则m与n平行或异面,故C错误;在D中,若m,m,=n,则由直线与平面平行的性质定理得mn,故D正确故选:D7内江市某镇2009年至2015年中,每年的人口总数y(单位:万)的数据如下表:年 份2009201020112012201320142015年份代号t0123456人口总数y888991011若t与y之间具有线性相关关系,则其线性回归直线=t+一定过点()A(3,9)B(9,3)C(6,14)D(4,
13、11)【考点】线性回归方程【分析】求出横坐标和纵坐标的平均数,写出样本中心点,可得结论【解答】解: =(0+1+2+3+4+5+6)=3, =(8+8+8+9+9+10+11)=9,线性回归直线=t+一定过点(3,9),故选:A8如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,其中茎为十位数,叶为个位数,甲、乙两人得分的中位数为X甲、X乙,则下列判断正确的是()AX乙X甲=5,甲比乙得分稳定BX乙X甲=5,乙比甲得分稳定CX乙X甲=10,甲比乙得分稳定DX乙X甲=10,乙比甲得分稳定【考点】茎叶图【分析】根据茎叶图中的数据,求出甲、乙二人的中位数以及数据分布的稳定性【解答】解:分析茎叶图
14、可得:甲运动员的得分为:8,13,14,16,23,26,28,33,38,39,51共11个,中位数是26,且分布较分散些,不稳定;乙运动员的得分为:18,24,25,31,31,36,36,37,39,44,50共11个,中位数是36,且分布较集中些,相对稳定些;所以X乙X甲=10,乙比甲得分稳定故选:D9设直线xy+3=0与圆心为O的圆x2+y2=3交于A,B两点,则直线AO与BO的倾斜角之和为()ABCD【考点】直线与圆的位置关系【分析】联立直线和圆的方程可得点的坐标,分别可得直线的倾斜角,可得答案【解答】解:由xy+3=0可得x=y3,代入x2+y2=3整理可得2y23y+3=0,解
15、得y1=,y2=,分别可得x1=0,x2=,A(0,),B(,),直线AO与BO的倾斜角分别为,直线AO与BO的倾斜角之和为+=,故选:C10为求使不等式1+2+3+n60成立的最大正整数n,设计了如图所示的算法,则图中“”处应填入()Ai+2Bi+1CiDi1【考点】程序框图【分析】先假设最大正整数i使1+2+3+i60成立,然后利用伪代码进行推理出最后i的值,从而得到我们需要输出的结果【解答】解:假设最大正整数i使1+2+3+i60成立,此时满足S60,则语句i=i+1,S=S+i,继续运行,此时i=i+1,属于图中输出语句空白处应填入i1故选:D11在如图所示的几何体中,三棱锥DABC的
16、各条棱长均为2,OA,OB,OC两两垂直,则下列说法正确的是()AOA,OB,OC的长度可以不相等B直线OB平面ACDC直线OD与BC所成的角是45D直线AD与OB所成的角是45【考点】棱锥的结构特征【分析】在A中,推导出AOCBOCAOB,从而OA,OB,OC的长都相等;在B中,以O为原点,OA,OB,OC分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线OB与平面ACD不平行;在C中,直线OD与BC所成的角是90;在D中,利用向量法得到直线AD与OB所成的角是45【解答】解:在A中,棱锥DABC的各条棱长均为2,OA,OB,OC两两垂直,AOCBOCAOB,OA,OB,OC的长都
17、相等,故A错误;在B中,以O为原点,OA,OB,OC分别为x,y,z轴,建立空间直角坐标系,O(0,0,0),B(0,0),A(,0,0),C(0,0,),D(),=(0,0),=(,0,),=(0,),设平面ACD的法向量=(x,y,z),则,取x=1,得=(1,1,1),=,直线OB平面ACD,故B错误;在C中, =(),=(0,),cos=0,直线OD与BC所成的角是90,故C错误;在D中, =(0,),=(0,),cos=,直线AD与OB所成的角是45,故D正确故选:D12已知正三角形ABC的边长为2,D是BC边的中点,将三角形ABC沿AD翻折,使,若三棱锥ABCD的四个顶点都在球O的
18、球面上,则球O的表面积为()A7B19CD【考点】球的体积和表面积【分析】通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OD,求出球O的半径,即可求解球O的表面积【解答】解:BCD中,BD=1,CD=1,BC=,所以BDC=120,底面三角形的底面圆半径为:DM=CM=1,AD是球的弦,DA=,OM=,球的半径OD=该球的表面积为:4OD2=7;故选:A二填空题(共4小题,共20分)13阅读下面程序若a=4,则输出的结果是16【考点】伪代码【分析】解:模拟执行程序代码,可得程序的功能是计算并输出a=的值,由a=4,即可得解【解答】解:模拟执行程序代码,可得程序的功能是计算并输
19、出a=的值,a=4不满足条件a4,a=44=16故答案为:1614将一颗骰子先后抛掷2次,以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=9的内部的概率为【考点】列举法计算基本事件数及事件发生的概率【分析】由题意知本题是一个古典概型,试验发生包含的所有事件总数为36,满足条件的事件可以通过列举得到事件数,根据古典概型公式得到结果【解答】解:由题意知本题是一个古典概型,试验包含的所有事件总数为36,满足条件的事件有(1,1),(1,2),(2,1),(2,2),共有4种结果,记点(x,y)在圆x2+y2=9的内部记为事件A,P(A)=,即点(x,y)在圆x2+
20、y2=9的内部的概率,故答案为15一个直棱柱被一个平面截去一部分后,剩余部分的三视图如图所示,则该剩余部分的体积为【考点】由三视图求面积、体积【分析】由三视图得该剩余部分是棱长为2的正方体ABCDA1B1C1D1沿平面ACC1A1切去ABCA1B1C1,剩余部分是三棱柱ADCA1D1C1,由此能求出该剩余部分的体积【解答】解:由三视图得该剩余部分是棱长为2的正方体ABCDA1B1C1D1中切去三棱柱BDCB1D1C1,再切去三棱锥AA1B1D1,剩余部分是两个三棱锥B1ABD和ADD1B1的组合体,该剩余部分的体积为V=23=故答案为:16设点P(x0,1),若在以O为圆心的圆O:x2+y2=
21、4上存在一点Q,使OPQ=30,则x0的取值范围是【考点】直线与圆的位置关系【分析】圆O外有一点P,圆上有一动点Q,OPQ在PQ与圆相切时取得最大值根据两点间的距离公式表示出OP的长,利用PO216求出x0的范围【解答】解:由题意x2+y2=4,半径r=2,圆心为O(0,0)圆上存在点q使得OPQ=30需过P点向圆引的两条切线夹角不小于60即切线与OP的夹角不小于30那么PO4,所以PO216,即x02+116,所以x0的取值范围是故答案为:三解答题(共6小题,共70分)17如图所示,在四棱锥PABCD中,PA底面ABCD,且底面ABCD为正方形,E是PA的中点()求证:PC平面BDE;()求
22、证:平面PAC平面BDE【考点】平面与平面垂直的判定;直线与平面平行的判定【分析】()连接AC交BD于点O,连接OE,则PCOE,由此能证明PC平面BDE()推导出PABD,BDAC,从而BD平面PAC,由此能证明平面PAC平面BDE【解答】证明:()如图所示,连接AC交BD于点O,连接OEO是AC的中点,E是PA的中点PCOEOE平面BDE,PC平面BDEPC平面BDE()PA底面ABCDPABDABCD是正方形BDAC又ACPA=ABD平面PAC又BD平面BDE平面PAC平面BDE18已知圆C:x2+y24x5=0()判断圆C与圆D:(x5)2+(y4)2=4的位置关系,并说明理由;()若
23、过点(5,4)的直线l与圆C相切,求直线l的方程【考点】直线与圆的位置关系【分析】()利用圆C与圆D的连心线长=圆C与圆D的两半径之和,判断圆C与圆D:(x5)2+(y4)2=4的位置关系;()分类讨论,利用圆心C(2,0)到直线l的距离=半径,求直线l的方程【解答】解:()圆C的标准方程是(x2)2+y2=9圆C的圆心坐标是(2,0),半径长r1=3又圆D的圆心坐标是(5,4),半径长r2=2圆C与圆D的连心线长为又圆C与圆D的两半径之和为r1+r2=5圆C与圆D外切()当直线l的斜率不存在时,直线l的方程为x=5,符合题意 当直线l的斜率存在时,设直线l的方程为y=k(x5)+4,即kxy
24、+45k=0直线l与圆C相切圆心C(2,0)到直线l的距离d=3,即,解得此时直线l的方程为,即7x24y+61=0综上,直线l的方程为x=5或7x24y+61=019随着智能手机等电子产品的普及,“低头族”正成为现代社会的一个流行词在路上、在餐厅里、在公交车上,随处可见低头玩手机的人,这种“低头族现象”冲击了人们面对面交流的温情,也对人们的健康构成一定的影响为此,某报社发起一项专题调查,记者随机采访了M名市民,得到这M名市民每人在一天内低头玩手机的时间(单位:小时),根据此数据作出频数的统计表和频率分布直方图如下:分组频数频率0,0.5)40.100.5,1)mp1,1.5)10n1.5,2
25、)60.152,2.5)40.102.5,3)20.05合计M1()求出表中的M,p及图中a的值;()试估计这M名市民在一天内低头玩手机的平均时间(同一组的数据用该组的中间值作代表);()在所取样本中,从一天内低头玩手机的时间不少于2小时的市民中任取2人,求两人在一天内低头玩手机的时间都在区间2,2.5)内的概率【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图【分析】()由频率=,利用频率分布表频率分布直方图能求出表中的M,p及图中a的值()先求出,由此利用频率分布直方图能估计这M名市民在一天内低头玩手机的平均时间()所取样本中,一天内低头玩手机的时间不少于2小时的市民共有6人,由
26、此利用列举法能求出两人在一天内低头玩手机的时间都在区间2,2.5)内的概率【解答】解:()分组0,0.5)内的频数是4,频率是0.10,得M=40频数之和为M=404+m+10+6+4+2=40,得m=14分组0.5,1)内的频率a是分组0.5,1)内频率与组距的商,(),设这40名市民一天内低头玩手机的平均时间为x,则x=0.250.1+0.750.35+1.250.25+1.750.15+2.250.1+2.750.05=1.225()所取样本中,一天内低头玩手机的时间不少于2小时的市民共有6人设一天内低头玩手机的时间在区间2,2.5)内的人为a1,a2,a3,a4,在区间2.5,3)内的
27、人为b1,b2,则任取2人有:(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2)共15种情况其中两人在一天内低头玩手机的时间都在区间2,2.5)内有:(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4)共6种情况两人在一天内低头玩手机的时间都在区间2,2.5)内的概率为20如图所示,在长方体ABCDA1B1C1D1中,BC=2AB=4,E是A1D1的中点()在平面A1
28、B1C1D1内,请作出过点E与CE垂直的直线l,并证明lCE;()设()中所作直线l与CE确定的平面为,求直线CC1和平面所成角的大小【考点】直线与平面所成的角;空间中直线与直线之间的位置关系【分析】()连接B1E,C1E,则直线B1E即为所求直线l,推导出B1ECC1,B1EC1E,由此能证明lCE()连接B1C,则平面CEB1即为平面,推导出B1EC1F,C1F平面,从而直线CC1和平面所成角为FCC1,由此能求出直线CC1和平面所成角【解答】解:()如图所示,连接B1E,C1E,则直线B1E即为所求直线l在长方体ABCDA1B1C1D1中,CC1平面A1B1C1D1B1ECC1B1C1=
29、2A1B1=4,E是A1D1的中点B1EC1E又CC1C1E=C1B1E平面CC1EB1ECE,即lCE()如图所示,连接B1C,则平面CEB1即为平面过点C1作C1FCE于F由()知B1E平面CC1E,故B1EC1FC1FCE,CEB1E=EC1F平面CEB1,即C1F平面直线CC1和平面所成角为FCC1在ECC1中,且EC1CC1直线CC1和平面所成角为4521已知圆C经过点A(1,1)和B(4,2),且圆心C在直线l:x+y+1=0上()求圆C的标准方程;()设M,N为圆C上两点,且M,N关于直线l对称,若以MN为直径的圆经过原点O,求直线MN的方程【考点】直线和圆的方程的应用【分析】()根据题意,分析可得圆C的圆心是线段AB的垂直平分线与直线l的交点,先求出线段AB的垂直平分线的方程,与直线l联立可得圆心C的坐标,进而可得圆的半径,即可得答案;()设以MN为直径的圆的圆心为P,半径为r,可以设p的坐标为(m,1m),结合直线与圆的位置关系可得(m1)2+(m1)2+m2+(m+1)2=9,解得m的值,即可得p的坐标,分析可得直线MN的斜率为1,由直线的点斜式方程可得答案【解答】解:()A(1,1),B(4,2)直线AB的斜率直线AB的垂直平分线的斜率为1 又线段AB的中点坐标为线段AB的垂直平分线的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南昌公积金提取管理办法
- 南开区网络优化管理办法
- 重庆小额贷款管理办法
- 教师管理办法女教师产假
- 江苏彩钢板厂房管理办法
- 工程部资金管理办法文件
- 民营企业临时工管理办法
- 金融信贷支付管理办法
- 兰州市规范养狗管理办法
- 江西企业保证金管理办法
- GB/T 8312-2002茶咖啡碱测定
- 2023年苏州国发创业投资控股有限公司招聘笔试题库及答案解析
- 通信线路工程施工组织设计方案【实用文档】doc
- 高中历史《第一次工业革命》说课课件
- 预计财务报表编制及分析课件
- 学生集体外出活动备案表
- Q∕SY 1347-2010 石油化工蒸汽透平式压缩机组节能监测方法
- 基于Qt的俄罗斯方块的设计(共25页)
- 西门子顺序功能图语言S7-Graph的应用
- 中医治疗室工作制度管理办法
- 提花装造工艺技术培训课程
评论
0/150
提交评论