




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平面向量的数量积的物理背景及其含义教学设计教学目标1、知识与技能(1)掌握平面向量的数量积及其几何意义;(2)掌握平面向量数量积的重要性质;(3)了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;(4)掌握向量垂直的条件2、过程与方法(1).培养学生观察问题、分析问题和解决问题的实际操作能力;(2).培养学生叙述表达自己解题思路和探索问题的能力3、情感、态度与价值观培养学生的交流意识、合作精神;重点:平面向量的数量积定义难点:平面向量数量积的定义和平面向量数量积的应教具:直尺教学过程一、复习引入:1向量共线定理 2平面向量基本定理: 3平面向量的坐标表 分别取与轴、轴方向相同的两个单位
2、向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量的(直角)坐标,记作4平面向量的坐标运算若,则,若,则5 ()的充要条件是x1y2-x2y1=06. 力做的功:W = |F|s|cosq,q是F与s的夹角.二、讲解新课:1两个非零向量夹角的概念已知非零向量与,作,则()叫与的夹角.说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0q180C2平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作ab,即有ab = |a|b|cos
3、q,().并规定0与任何向量的数量积为0.探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积ab,而ab是两个向量的数量的积,书写时要严格区分.符号“ ”在向量运算中不是乘号,既不能省略,也不能用“”代替.(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cosq有可能为0.(4)已知实数a、b、c(b0),则ab=bc a=c.但是ab = bc a = c 如右图:ab = |a|b|cosb = |b
4、|OA|,bc = |b|c|cosa = |b|OA| ab = bc 但a c (5)在实数中,有(ab)c = a(bc),但是(ab)c a(bc) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线. 3“投影”的概念:作图 定义:|b|cosq 叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值;当q为钝角时投影为负值;当q为直角时投影为0;当q = 0时投影为 |b|;当q = 180时投影为 -|b|.4向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cosq的乘积.5两个向量的数量积的性质:设a、b
5、为两个非零向量,e是与b同向的单位向量.1 ea = ae =|a|cosq 2 ab ab = 03 当a与b同向时,ab = |a|b|;当a与b反向时,ab = -|a|b|. 特别的aa = |a|2或4 cosq = 5 |ab| |a|b|三、讲解范例:例1 已知|a|=5, |b|=4, a与b的夹角=120o,求ab.例2 已知|a|=6, |b|=4, a与b的夹角为60o 求 (a+2b)(a-3b).例3 已知|a|=3, |b|=4, 且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直. 例4 判断正误,并简要说明理由.00;0;0;若0,则对任一非零有;,则与
6、中至少有一个为0;对任意向量,都有()();与是两个单位向量,则.解:上述8个命题中只有正确;对于:两个向量的数量积是一个实数,应有0;对于:应有0;对于:由数量积定义有cos,这里是与的夹角,只有或时,才有;对于:若非零向量、垂直,有;对于:由可知可以都非零;对于:若与共线,记.则()()(),()()()()若与不共线,则()().评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例5、已知,当,与的夹角是60时,分别求.解:当时,若与同向,则它们的夹角,cos036118;若与反向,则它们的夹角180,cos18036(-1)18;当时,它们的夹角90, ;当与的夹角是60
7、时,有cos60369评述:两个向量的数量积与它们的夹角有关,其范围是0,180,因此,当时,有0或180两种可能.课堂练习:1已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )A60 B30 C135 D2已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为A2 B2 C6 D123已知a、b是非零向量,则|a|=|b|是(a+b)与(a-b)垂直的( )A充分但不必要条件 B必要但不充分条件C充要条件 D既不充分也不必要条件4已知向量a、b的夹角为,|a|=2,|b|=1,则|a+b|a-b|= 5已知a+b=2i-8j,a-b=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么ab= 6已知ab、c与a、b的夹角均为60,且|a|=1,|b|=2,|c|=3,则(a+2b-c)_7已知|a|=1,|b|=,(1)若ab,求ab;(2)若a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 33617-2025聚酰亚胺短纤维
- 健康管理专业教学标准(高等职业教育专科)2025修订
- 视觉训练与康复专业教学标准(高等职业教育专科)2025修订
- 期末复习《第7-8章》选择题常考热点专题训练 2024-2025学年鲁教版(五四制)八年级数学下册
- 垃圾分类调研报告7
- 2023-2029年中国压合板行业市场调查研究及发展战略规划报告
- 2025年中国雄安新区建设行业市场运行现状及投资规划建议报告
- 2025年中国油炸面食行业发展趋势预测及投资战略咨询报告
- 2022-2027年中国SLG页游市场前景预测及行业投资潜力预测报告
- 中国汽车外饰行业发展潜力分析及投资方向研究报告
- 餐饮连锁企业品牌授权与经营管理协议
- 北京市2024年高招本科普通批录取投档线
- DB32-T 5088-2025 废活性炭综合利用污染控制技术规范
- 2024-2025学年人教版数学八年级下册期末复习卷(含解析)
- 城市通信基站建设对周边居民影响风险评估报告
- 美容院洗涤协议书
- 学习解读《水利水电建设工程验收规程》SLT223-2025课件
- 2025-2030中国婚介网站行业发展趋势与投资战略研究报告
- 肥胖症诊疗指南(2024年版)解读
- 2025甘肃省农垦集团有限责任公司招聘生产技术人员145人笔试参考题库附带答案详解
- 2025届芜湖市重点中学七年级生物第二学期期末学业水平测试模拟试题含解析
评论
0/150
提交评论