高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体分布教案 新人教A版必修_第1页
高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体分布教案 新人教A版必修_第2页
高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体分布教案 新人教A版必修_第3页
高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体分布教案 新人教A版必修_第4页
高中数学 第二章 统计 2.2.1 用样本的频率分布估计总体分布教案 新人教A版必修_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.1用样本的频率分布估计总体分布一、教学目标重点:会列频率分布表,画频率分布直方图、频率折线图.难点:能通过样本的频率分布估计总体的分布.知识点:对样本的数据进行处理,求极差,分组数,列频率分布表,画频率分布直方图.能力点:通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.教育点:通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.自主探究点:根据教材实例,探究作频率分布直方图的过程.训练(应用)点:画频率分布直方图.考试点:根据频率分布直方图,求

2、频率,频数等一些问题.易错点、易混点:频率分布直方图的纵坐标是频率/组距.二、引入新课1我们前面学习了哪些抽样方法?他们有什么共同点?类别共同点各自特点联系适应范围简单随机抽样(1)抽样过程中每个个体被抽到的可能性相等;(2)每次抽出个体后不再将它放回,即不放回抽样从总体中逐个抽取总体个数较少分层抽样将总体均分成几部分,按预先制定的规则在各部分中抽取在起始部分取样时,采用简单随机抽样总体个数较多系统抽样将总体分为几层,分层进行抽取各层抽样时,采用简单随机抽样或系统抽样总体由差异明显的几部分组成2抽样的目的是什么?从中寻找所包含的信息,用样本去估计总体3.我们要了解我校学生每月零花钱的情况,应该

3、怎样进行抽样?根据实际情况综合使用多种抽样方式比如年级之间分层抽样,每年级内部系统抽样,每班内部系统抽样或简单随机抽样等【设计意图】复习随机抽样的三种方法;抽样的目的就是通过样本来研究总体,引出本节课内容.情境1:在NBA的2013赛季中,甲、乙两名篮球运动员每场比赛得分的原始纪录如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲、乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究学习的主要内容

4、用样本频率分布估计总体分布.情境2:如下样本是随机抽取近年来枣庄7月25日至8月24日的最高气温:7月25日至8月10日41.937.535.735.437.238.134.733.733.332.534.633.030.831.028.631.528.88月8日至8月24日28.631.528.833.232.530.330.229.833.132.829.825.624.730.030.129.530.3怎样通过上表中的数据,分析比较两时间段内的高温(33C)状况? 这就是我们这堂课要研究学习的主要内容用样本频率分布估计总体分布.三、探究新知问题1:我国是世界上严重缺水的国家之一,城市缺水

5、问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)讨论结果:为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.【设计意图】由学生身边实例入手,激发学生的学习兴趣,探索热情,特别是问题提出,

6、增加了学生的参与感,也让学生充分体会数学来源于生活,研究统计具有较强的实际意义.问题2:我们通过随机抽样,获得了100为居民的某年的月用水量(单位:t),(数据在教材66页)那么这些数据能告诉我们什么呢?如何来处理这些数据呢?分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.阅读教材6

7、667页,回答问题.(给学生10分钟时间阅读教材)(1)如何计算一组数据中的极差?求极差即计算一组数据中最大值与最小值的差,如:在上述问题中极差应该是4.3-0.2=4.1.说明了样本数据的变化范围是4.1t.(2)如何决定组距与组数?组距与组数的确定没有固定的标准,常常要一个尝试和选择的过程.将数据分组时,组数应力求合适,当然数据分组与样本容量有关,一般样本容量越大,所分组数就越多.一般情况下,当样本容量不超过100时,一般分成512组.组数=极差/组距,在上面的问题中取组距为0.5,所以组数=4.1/0.5=8.2,所以将组数分为9组.这里面只要保证组数处在5-12组之间就可以,组距的确定

8、没有固定的标准,组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多. (3)怎样将数据分组?以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?0,0.5),0.5,1),1,1.5),4,4.5.(4)如何画列频率分布表?找到属于每一个组中的数据的个数,即频数,频数/样本容量=频率,所以上述问题的频率分布表如下:(5)如何画频率分布直方图?小结:画频率分布直方图的一般步骤(1)计算一组数据中最大值与最小值的差,即求极差(2)决定组距与组数(3)将数据分组(4)列频率分布表(5)画频率分布直方图【设计意图

9、】引导学生把新问题回归到旧知识进行解决,考虑到学生的遗忘因素,先进行展示,唤起学生的记忆,为下一步运用旧知识解决问题打下基础.经过复习使同学们明确将统计对象中某些数量用比较直观的图表示出来,便于对数据进行研究.同时,这一环节也明确了下一步的研究目标.四、理解新知为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用图形表示:这个图形叫频率分布直方图,注意:图形的纵坐标是频率/组距,横坐标是由组距从小到大组成的.形成若干个小矩形.问题3:每个小矩形的面积是什么意义?根据频率分布直方图你能看出什么?通过计算每个矩形的面积等于每个组的频率,且矩形面积的和等于1,即频率之和等于1.

10、通过图形可以看出:(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;(2)大部分居民的月均用水量集中在一个中间值附近,只有少数居民的月均用水量很多或很少;(3)居民月均用水量的分布有一定的对称性等.思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表和频率分布直方图,你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)由频率分布表和频率分布直方图可以看出,月用水量在3t以上的居民所占的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量在3t以下.因此,居民的月用水量标准定为3t是一个可以考虑的标准.想一想:你认

11、为3t这个标准一定能够保证85%以上的居民用水不超标吗?如果不一定,哪些环节可能会导致结论的偏差?不一定. 实际上,这个标准可能会出现偏差,关键在于样本的抽取是否公平合理,是否具有很高的代表性. 所以,在实践中对统计结论是需要评价的.【设计意图】在复习中巩固,在巩固中提升,为学习频率分布直方图打下基础,让学生知道频率分布直方图的作用.问题4:什么是频率分布折线图,怎样画出频率分布折线图?在频率分布直方图中,依次连接各小长方形上端的中点,就得到一条折线,这条折线称为频率分布折线图. 当总体中的个体数很多时(如抽样调查全国城市居民月均用水量),随着样本容量的增加,作图时所分的组数增多,组距减少,相

12、应的频率分布折线图越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 它反映了总体在各个范围内取值的概率总体密度曲线能够更好的反映总体在各个范围内的百分比,能够提供更准确的信息.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x= a, x=b及x轴所围图形的面积【设计意图】对于频率分布折线图和整体密度曲线学生作为了解内容,所以老师在这里简单介绍.五、运用新知【例1】有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人.(1)列出学生参加运动队的频率分布表;(2)画出频率分布条

13、形图.试验结果频数频率参加足球队(记为1)300.30参加蓝球队(记为2)270.27参加排球队(记为3)230.23参加乒乓球队(记为4)200.20合计1001.00解:(1)参加足球队记为1,参加蓝球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:频率试验结果(2)由(1)可得频率分布条形图如下:【设计意图】熟悉频率分布直方图画法步骤,通过图形会解决相应的问题.通过学生的自我实践,熟悉画频率分布直方图的方法、步骤.同时,也经过学生自己动手发现操作中的问题.【例2】为了了解中学生的身体发育情况,对某中学17岁的60名女生的身高进行了测量,结果如下:(单位:cm)154 1

14、59 166 169 159 156 166 162 158 156 166 160 164 160 157 151 157 161 158 153 158 164 158 163 158 153 157 162 159 154 165 166 157 151 146 151 160 165 158 163 163 162 161 154 165 162 159 157 159 149 164 168 159 153 列出样本的频率分布表;绘出频率分布直方图.解:第一步,求极差:上述60个数据中最大为169,最小为146,故极差为:16914623 cm.第二步,确定组距和组数,可取组距为3

15、cm,则组数为,可将全部数据分为8组.第三步,确定组限:145.5,148.5),148.5,151.5),151.5,154.5),154.5,157.5),157.5,160.5),160.5,163.5),163.5,166.5),166.5,169.5).第四步,列频率分布表: 第五步,根据上述数据绘制频率分布直方图如下图:【设计意图】这种题型是高考常考查的,直接给出频率分布直方图,利用图象解决问题.以上例1和例2两种情况的不同之处在于,前者的频率分布表列出的是几个不同数值的频率,相应的条形图是用其高度表示取各个值的频率;后者的频率分布表列出的是在不同区间内取值的频率,相应的直方图是用

16、图表面积的大小来表示各个区间内取值的频率.我们在处理一个数理问题时,可以采用样本的频率分布估计总体分布的方法,这是因为,频率分布随样本容量的增大更加接近于总体分布,当样本容量无限增大且分组的组距无限缩小时,频率分布的直方图就演变成一条光滑的曲线总体密度曲线. 这条曲线是客观存在的,但是我们却很难将它准确地画出,我们只能用样本的频率分布去对它进行估计.基于频率分布与相应的总体分布有这种关系,再加上我们通常并不知道一个总体的分布,我们往往是从一个总体中抽取一个样本,用样本的频率去估计相应的总体分布.一般说来,样本的容量越大,这种估计越精确.六、课堂小结:1用样本的频率分布来估计总体分布将样本数据恰

17、当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.2.画频率分布直方图的一般步骤为: (1)计算一组数据中最大值与最小值的差,即求极差(2)决定组距与组数(3)将数据分组(4)列频率分布表(5)画频率分布直方图【设计意图】通过回顾、归纳、总结提升学生认识统计对于现实的意义七、布置作业书面作业1对于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是( )A频率分布直方图与总体密度曲线无关B频率分布直方图就是总体密度曲线 C样本容量很大的频率分布直方图就是总体密度曲线 D如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线2在用样

18、本频率估计总体分布的过程中,下列说法中正确的是( )A总体容量越大,估计越精确 B总体容量越小,估计越精确 C样本容量越大,估计越精确 D样本容量越小,估计越精确310个小球分别编有号码1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,数0.4是指1号球占总体分布的( )A频数 B概率 C频率 D累计频率4已知样本:12 7 11 12 11 12 10 10 9 8 13 12 10 9 6 11 8 9 8 10,那么频率为0.25的样本的范围是( )A5.5,7.5) B7.5,9.5) C9.5,11.5) D11.5,13.5)5频率分布直方图中,小长方体的面积等于

19、( )A相应各组的频数 B相应各组的频率 C组数 D组距6在总体密度曲线中,总体在区间(a,b)内取值的概率就是直线_、_、_和总体密度曲线围成的图形的面积.7对100位大学毕业生在该年七月份求职录取情况调查结果如下:20人录取在行政机关,31人录取在公司,3人录取在银行,18人录取在学校,其余的还在求职中.那么七月份这100位大学生还未被录取的可能性为_.8一个容量为n的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n=_.9根据表格完成下列各问题:分 组频 数频 率1075, 1085)31085, 1095)91095, 1105)131105, 1115)161115, 1125)261125, 1135)201135, 1145)71145, 1155)41155, 1165)2合 计100 (1)完成上面的频率分布表; (2)根据上表,画出频率分布直方图; (3)根据上表,估计数据落在1095,1135)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论