200W LED照明系统的电源设计方案_第1页
200W LED照明系统的电源设计方案_第2页
200W LED照明系统的电源设计方案_第3页
200W LED照明系统的电源设计方案_第4页
200W LED照明系统的电源设计方案_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、200W LED照明系统的电源设计方案上网时间:2009-07-07 来源:飞兆通用大功率LED照明驱动系统可以采用TI、Intersil、ST、Richtek、Linear、OnSemi的LED驱动器来实现,关键的是LED路灯需要的电源输出功率一般要大于100W,因此设计一个高效率的大功率电源是整个系统的关键点。本文简单介绍飞兆半导体(Fairchild)公司的200W电源解决方案。飞兆200W电源解决方案主要由基于FAN6961电压模式PFC控制器的高功率因数预稳压器和基于谐振LLC拓扑的隔离型DC/DC转换器构成,输入电压范围可从90VRMS到265VRMB,可产生六路输出,每路最大输出

2、功率为0.7A/48V。FAN6961是8引脚边界模式PFC控制器,能准时调整输出的DC电压,从而达到功率因素修正。该器件的电源电压高达25V,起动电流低于25uA,工作电流可降低到6mA以下,可以进行零电流检测和逐个周期限流。FAN6961可用于电子灯镇流器,AC/DC开关电源转换器以及适配器和带ZCS/ZVS的反激电源转换器。图1给出了基于FAN6961的带整流和EMI滤波功能的电路图。图1:基于FAN6961的带整流和EMI滤波功能的电路图FSFR2100功率开关也是该方案中的一个重要元件。FSFR2100采用零电压开关(ZVS)技术,能够大幅降低MOSFET和整流器的开关损耗。采用这种

3、技术,此开关无需散热器即可处理高达200W的功率,使用散热器更可处理高达450W的功率。FSFR2100还集成了所有必需元件以构建可靠及高效的谐振转换器,并在高热效的SiP封装中集成了一个脉冲频率调制(PFM)控制器、一个高压栅极驱动电路和两个快速恢复MOSFET(FRFET),以及软启动、间歇工作模式和重要的保护功能。图2:200W LED照明系统的电源方案原型这个200W电源解决方案的详细介绍和实现电路图参见下面的PDF文档。该电源方案的主要优势包括:非常紧凑设计;全负载效率大于94%;待机功耗仅为1.2W;EMI很低;可通过PWM信号调光;只有PFC开关需要加散热片。注册会员 发短消息

4、加为好友 当前离线 1# 大 中 小 发表于 2008-12-5 16:49 只看该作者 针对不同LED照明应用的安森美半导体电源解决方案-转与传统的光源相比,发光二极管(LED)具备众多的优点,如工作电压低,能效高,很小巧并产生定向光。它们能够提供极宽广的色彩以及白光,不产生红外(IR)或紫外(UV)辐射,而且由于它们是固态器件,在机械上很强固,并且不含汞,在恰当设计和使用时能够具有超过5万小时的工作寿命,远长于标准白炽灯的1千小时寿命。此外,它们还完全可调光。这些优点使得LED的应用越来越广泛,如今已拥有众多的应用市场,如建筑景观照明、交通信号灯、显示屏、零售、中小尺寸液晶显示屏(LCD)

5、背光、汽车和太阳能等,并在街道照明、住宅照明乃至中大尺寸LCD背光方面拥有越来越大的发展空间。 高亮度LED对于照明设计、全球能源节省和创新产品具有重大意义,对催生固态照明革命至关重要。这种革命需要一种整体性的途径,在这其中,LED与电源转换和控制电子器件以及热管理解决方案和光学器件集成在一起。 LED照明应用的电源解决方案 如上所述,LED本质上是低电压器件;根据色彩和电流的不同,LED的正向电压介于不足2 V至4.5 V之间。此外,LED需要采用恒定电流来驱动,从而确保获得所需的发光亮度和色彩。这就需要相应的电源转换和控制解决方案能够适应不同的电源,无论是交流线路、太阳能板、12 V汽车电

6、池、直流电源或低压交流系统,甚至是基于碱和镍的电池或锂离子电池。 作为一家全球领先的高能效电源半导体供应商,安森美半导体专注于运用自身的低电压和高电压技术以及在电源管理解决方案方面的专长来应对LED照明所面临的挑战:无论是便携显示产品、汽车内部照明或LED信号灯的镇流器。在下文中,我们将结合LED照明的多种不同应用,如建筑、工业、汽车和便携应用等,讨论安森美半导体相应的驱动电源解决方案。 1)可集成最高700 V高压FET的离线型AC-DC开关电源解决方案 图1(a):输入功率小于10 W的LED照明解决方案功能框图 安森美半导体在将电源从交流主电源转换为功率等级在几瓦至几百瓦范围之间、适合多

7、种不同应用的可用能源方面拥有丰富的经验。安森美半导体开发出了结合高压开关晶体管和中等电压模拟电路的极高压集成电路(VHVIC),针对宽广的功率需求提供集成了高性价比解决方案。安森美半导体提供多种固定频率控制器和转换器,将电压高至700 V的高压场效应管(FET)集成至简单、经济、元件数量少的解决方案之中。 这类解决方案包括三个方面: 单片交流-直流(AC-DC)恒流驱动器,功率范围在5至15 W之间,如NCP1013、NCP1014和NCP1028等。NCP系列离线控制器,同时包含隔离型和非隔离型,功率高达150 W。安森美半导体提供用于街道照明、具有单段式功率因数校正器(PFC)的参考设计。

8、 图1(b):输入功率介于10至25 W的LED照明解决方案功能框图 PFC解决方案 对于功率低于25 W(230 Vac)的较低功率应用而言,最常用的是集成电源开关稳压器,因为它可以将元件数量减至最少。高于这个功率范围,则可以使用控制器,因为控制器为设计人员在选择这种应用最适合的高压FET方面提供灵活性。控制器既可用于隔离应用,也可用于非隔离应用,而安森美半导体提供多种不同的增值特性,允许设计人员针对其具体设计要求优化设计。 图2:NCP1351离线式LED驱动器参考设计。 图2显示的是安森美半导体NCP1351离线式LED驱动器参考设计。这参考设计的输入功率范围介于85至265 Vac之间

9、,具有尺寸小、成本低、良好线路稳压等特性,在20 W负载具有80%的高能 效,并集成了过载保护和短路保护等安全特性,最大尺寸仅为1253735 mm。 图3(a):传统的2段式PFC架构。 IEC1000-3-2标准设定了限制注入至交流线路中谐波的规范。就照明应用而言,如果输入功率大于25 W(C类),这个规范就会适用。此外,即使在某些地区并不要求遵从这项IEC规范,也可能对最低功率因数提出要求。这样一来,这些应用中就需要前端PFC控制器。增加这样一个段会导致符合能效和空间等其它 系统要求方面的困难,除非作出明智的选择。 图3(b):改进的单段式PFC架构。 幸运的是,安森美半导体深刻理解这些

10、挑战,拥有创新的PFC控制器产品阵容,符合设计人员对简单、紧凑和强固解决方案的期望。安森美半导体不仅支持传统的2段式应用,也推出了数款进一步简化设计的独特解决方案,如NCP1651单段式反激控制器。 NCP1651在单芯片解决方案中集成了功率因数校正和转换器,带有外部FET,允许根据所需功率实现可扩展的解决方案。NCP1651具有隔离型降压功能,支持连续或不连续模式操作,并支持平均电流模式控制(ACMC)和固定频率控制,其高精度乘法器可用于降低总体谐波失真(THD)。它还具有过温关闭和外部关闭等功能。这款单段式PFC控制器适合于电子镇流器、街灯、交通信号灯和照明等应用。 对于输入功率介于25

11、W和60 W之间的LED照明应用而言,可以采用NCP1351这样的PWM控制器;对于输入功率在60 W至150 W范围而言,PWM控制器可以采用NCP1271;输入功率在150 W至300 W范围的,可以采用NCP1396这样的PWM控制器。而对于25 W至300 W的输入功率范围而言,都可以采用临界导电模式(CRM)的PFC控制器NCP1606。 2)宽输入范围的中等电压LED应用DC-DC电源解决方案 除了便携供电应用,还有一系列高亮度LED应用工作在8至40 VDC范围的电源,这些电源包括铅酸电池、12-36 VDC适配器、太阳能电池以及低压的12 和24 VAC交流系统。这类的照明应用

12、众多,如活动式照明、景观和道路照明、汽车和交通照明、太阳能供电照明,以及陈列柜照明等。 表1:宽输入范围的DC-DC LED应用 即使目标是采用恒定电流驱动LED,首先要理解的事件就是应用的输入和输出电压变化。LED的正向电压由材料特性、结温度范围、驱动电流和制造容限决定。凭借这些信息,就可以选择恰当的线性或开关电源拓扑结构,如线性、降压、升压或降压-升压等。 对于输入电压小于40 V的LED应用而言,如果输出电压小于输入电压,则选择降压拓扑结构。在此基础上,再根据输出电流来进行选择。若输出电流大于1.2 A,则可采用设计用于为高亮度LED供电的1.5 A恒流开关稳压器NCP3065。这器件拥

13、有额定值235 mV的极低反馈电压,适合对LED串的平均电流进行稳流。它拥有高至40 V的较宽输入电压范围,使其能够工作在12 Vac或12 Vdc电源。NCP3065还提供适合汽车级应用的版本NCV3065。只需采用极少的外部元件(如MOSFET或低VCEsat开关),NCP3065开关稳压器即可配置为降压、升压或SEPIC等拓扑结构。这使得它还能用于电流小于1.2 A的应用。对于电流小于1.2 A的应用,还可采用NCP1215+MOSFET来构成降压转换器。对于电流小于500 mA以及输入电压接近输出电压的应用而言,可以采用NUD4001这样的恒流线性驱动器。 如果输出电压大于输入电压,则

14、选择升压拓扑结构。在此基础上,如果是低压电池供电应用,则可以选用NCP5005、NCP5604、NCP5608和NCP5050这样的低压LED驱动器;如果不是低压电池供电应用,再看其输出电压值,如果大于40 V,同样可以采用NCP3065开关稳压器,这时候NCP3065结合外部NMOS MOSFET配置为升压控制器结构;否则,还要看开关电流来确定。如果开关电流大于1.3 A,则采用结合MOSFET或低VCEsat开关、配置为升压控制器的NCP3065;如果小于1.3 A,采用配置为升压转换器的NCP3065。 除了单纯的降压或升压拓扑结构,在某些环境下,也需要降压-升压拓扑结构,如从标准电源输

15、入端驱动LED串;此外,在输入电压和LED负载电压交叠的场合中使用这种拓扑结构也很常见。而NCP3065也能够配置为降压-升压控制器。这种架构需要2个电源开关。虽然NCP3065本身也包含1个电源开关,但我们可以使用1个低VCEsat PNP/NPN对管来获得更高转换效率。这是一种可扩展的方案,整流器和电源开关都能够根据具体的输入和输出电压以及电流电平来调整。值得一提的是,诸如NSS40500UW3这样的低VCEsat晶体管采用小巧的22 mm封装,提供极佳的性能。 图4所示的是功率最高达12 W的NCP3065降压-升压电路。这电路设计用于电流高达0.7 A的应用,输入电压范围可达8至26

16、Vdc。输出电压Vout为16 Vdc 700 mA和输入电压Vin为13-26 Vdc时,能效可达72%至80%。图4:功率高达12 W的NCP3065降压-升压电路 LED便携背光应用电源解决方案 白光LED和RGB三色LED广泛应用于小尺寸LCD面板和键盘的背光以及指示灯应用。在手机和数码相机应用中,高亮度LED还可用作闪光灯电源。这些应用需要优化的解决方案,不仅要能够最大限度延长电池使用时间,同时还要最大程度减小PCB占用面积和高度。 在这类LED背光应用中,既可以采用线性稳压器,也可以采用开关稳压器,各有其优势。线性稳压器结构比较简单、设计简单、成本低、噪声低、尺寸小、静态电流低。而

17、开关稳压器的能效较高,可达7085%。安森美半导体根据用户的应用需求,提供多种类型的解决方案。在开关稳压器解决方案方面,就同时提供电感型和电荷泵型这两种类型。具体而言,电感升压驱动器NCP5005 , NCP5050具有高能效和高输出电压的优势,其能效高达90%以上,而且大多能够驱动多达5个串联LED(输出电压达21 V)。此外,由于LED采用串联连接,这种类型的器件也具有理想的照明/电流匹配特性。由于无需电感,电荷泵型驱动器NCP5602, NCP5612, NCP5623有助于造就小型紧凑的解决方案,而这对应用中小尺寸LCD的便携产品而言显得犹为重要。这种类型的驱动器配备低成本的电容和电阻

18、,能够造就成本更低的解决方案。这种驱动器可以驱动1至3个LED,适合于小型器件的背光应用。 除了LCD,有机发光二极管(OLED)这种新兴显示技术近年来也开始应用在便携设备乃至中大尺寸平板电视之中。市场上最初出现的是无源矩阵OLED(PMOLED),由于其驱动拓扑结构的原因,其显示尺寸局限在1.8英寸及以下,常用于MP3播放器和手机副屏之中。更新的有源矩阵OLED(AMOLED)技术则没有显示尺寸方面的限制,它比LCD具有多项重要优势,如宽广的视角、高对比度、极快的响应时间和纤薄的厚度,这得益于它消除了背光的需要。AMOLED面板被用于手机的主显示屏及MP3播放器等。 安森美半导体在市场上率先

19、推出了专用的有源矩阵(AMOLED)面板稳压电源ICNCP5810D。NCP5810D双输出直流-直流转换器在1.75 MHz振荡器频率下整个电源能效高达83%。它具有极佳的线路瞬态抑制能力,在25 mA电流时线路瞬态电压为5 mV。为了适应AMOLED显示屏纤薄的外形,该转换器可转换至1.75 MHz的高频,可使用体积较小的电感器和陶瓷输出电容器。其0.55mm厚的超薄封装,使NCP5810D适用于最薄的便携式产品设计中。此外,它在关机模式下的断电功能,将泄漏显示电流限制在1微安,节约了关机状态下的电池电源。NCP5810D还具有逐周期峰值电流限制和热关机保护功能。 NCP5810D采用超薄

20、的3.0mm3.0mm0.55mm LLGA-12封装。 图5:安森美半导体AMOLED稳压电源IC NCP5810D的功能框图。 除了LCD背光和AMOLED电源应用,安森美半导体还推出面向相机闪光应用的LED驱动IC,如NCP5680等。以NCP5680为例,这是一款带超级电容(supercap)的双LED闪光驱动器,能够以2.5 A或更高电流驱动2个高亮度LED。它采用I2C控制,具有内置闪光序列。它的感光功能在明亮环境下可以限制闪光时间,从而节省电能。这器件使用超级电容来支持音频等其它大峰值电流的电路,还具有短路保护等保护功能。这器件于2008年7月开始量产。 图6:安森美半导体的超级

21、电容LED驱动器NCP5680的应用示意图。 总结 凭借着工作电压低、能效高、色彩丰富、产生定向光、无汞等众多优势,LED技术在建筑、交通、汽车、太阳能、LCD背光、汽车和住宅照明等领域获得越来越广泛的应用。作为全球领先的高能效电源解决方案供应商,安森美半导体提供丰富的LED驱动电源解决方案产品系列,满足从高压离线型AC-DC开关电源到宽输入范围的中等电压LED电源以及便携产品背光和闪光驱动应用的广泛需求,并提供一些相关的参考设计,恒流输出设计简单 CCR适合驱动低电流LED上网时间:2009-06-17 作者:桂军 来源:电子元件技术网在汽车尾灯、广告牌、装饰照明、电冰箱和洗衣机照明等应用中

22、,LED正在大量替代原有的氖灯及钨丝灯泡。这类应用中使用的LED,工作电流仅需20 mA至150 mA之间,在这个电流范围通常采用线性稳压器及电阻型驱动器作为LED驱动器。线性稳压器及电阻型驱动器可能会被另一种经济高效的驱动器所取代线性恒流稳压器(Linear Constant Current Regulators ,CCR)。市场上典型的LED驱动器市场上典型的LED驱动器有三类:开关稳压器、线性稳压器和电阻型驱动器:l 开关稳压器的能效高,并提供极佳的亮度控制,但同时价格也相对较高;l 线性稳压器结构比较简单,易于设计,提供稳流及过流保护,具有外部电流设定点,且没有电磁兼容性(EMC)问题

23、;l 电阻型驱动器利用电阻这样的简单分立器件,限制LED串电流,价格较低,同样易于设计,且没有EMC问题。这三种驱动器分别适合不同等级的电流应用:l 电流大于500 mA的大电流应用采用开关稳压器;l 在电流低于200 mA的低电流应用中,通常采用线性稳压器及电阻型驱动器,这是因为线性驱动器限于自身结构原因,无法提供这样大的电流;l 在200至500 mA的中等电流应用中,既可以采用线性稳压器,也可以采用开关稳压器。在诸如汽车尾灯的低电流LED应用中,开关稳压器设计复杂,存在电磁干扰,不太适合,线性稳压器不太经济实惠,电阻型驱动器成本较低且结构简单,但这种驱动器的工作电流和工作电压呈线性关系,

24、在低电压条件下,正向电流较低,会导致LED亮度不足,高电压下,通过LED的电流很高,且在负载突降等瞬态条件下,LED可能受损。而且,这种解决方案需要恰当的LED编码(binning),电阻库存大,且能效低。能否有一种比开关稳压器和普通线性稳压器经济、但在性能上又比电阻型驱动高出许多的驱动方案呢?针对这一需求,安森美推出一种新的LED驱动方案分立线性恒流稳压器。线性恒流稳压器的特点与电阻型驱动器相比,线性恒流稳压器可提供稳定电流,在宽电压范围下可保持LED亮度恒定,在高输入电压时保护LED,使其免于过驱动,在低输入电压时提供更高的亮度。其恒流特性,可以减少或消除源自不同供应商提供的不同LED的编

25、码成本,使系统总成本更低。在近日举行的安森美CCR产品推介会上,安森美半导体标准产品部小信号分部新品市场营销及应用总监Asif Jakwani现场演示了分别采用电阻型驱动器和线性恒流稳压器的汽车组合LED尾灯方案,其中的CCR的稳定电流为25 mA:l 在9 V的相同输入电压时,CCR驱动的尾灯亮度比电阻型驱动器的亮,说明CCR驱动电流高;l 在13 V的相同电压输入时,二者亮度一致;l 电压高于13 V后,CCR驱动的尾灯亮度变化不明显,说明电流逐渐稳流在25 mA,而电阻型驱动器驱动的尾灯,随着电压加大亮度变亮,说明驱动电流在上升。据Asif Jakwani介绍,在9到19V的汽车尾灯电压

26、范围内,CCR提供的电流精度达10%,而电阻型的电流精度仅为50%。总所周知,LED在过电压、过热情况下会出现光效较低甚至损坏。Asif Jakwani介绍说,CCR在设计时也考虑到这些情况,带有负温度系数(NTC),在极端的电压和工作温度下保护LED免受热失控影响。例如,采用SOT-223表面贴装封装的器件尺寸为7.0 mm x 6.5 mm x 1.6 mm,85时能在电路板上500 mm长/不到29克重的铜片上耗散630 mW的功率,适合极端的热工作环境。Asif Jakwani表示,面市的CCR通过了AEC101汽车标准认证,达到了汽车应用要求;这些器件还承受开关瞬态及电压尖峰,并具备

27、良好的静电放电(ESD)额定脉冲等级,测得为1.8 kV。此外,这些器件还支持环保,使用无卤素模子化合物,并符合无铅RoHS指令要求。电路设计比较简单CCR支持采用120/220 Vac供电,如在建筑物及通用照明应用中,120/220 Vac交流市电输入经过桥式整流后,只需要保证输入电压减去LED串总电压后所剩下的电压不超过CCR 45 V的阳极-阴极最大电压VAK即可。安森美半导体首批NSI45系列10款双端线性恒流稳压器已于2009年5月推出,双端CCR不可调光,若要实现调光功能,需要在并联电阻或串联一个三极管来实现调光。可调节输出的三端线性恒流稳压器在今年第四季度规划推出。电感型转换器提

28、高LED照明效率上网时间:2009-06-10 来源:光电新闻网中心议题: 如何提高LED的照明效率 如何驱动高VF电压LED 解决方案: 电感型转换器恒流驱动提升效率 LED在手机的LCD背光中的广泛应用已经有若干年了。如今其应用正扩展到大面积的LCD应用,包括袖珍PC、汽车导航GPS、数字相框、可携式DVD乃至笔记型计算机。LED在手机的LCD背光中的广泛应用已经有若干年了。如今其应用正扩展到大面积的LCD应用,包括袖珍PC、汽车导航GPS、数字相框、可携式DVD乃至笔记型计算机。LED也正开始取代家用的、汽车和其它通用光源的传统白炽灯和卤素光源。这一趋势背后的动力是技术的快速进步,包括L

29、ED更亮,效率更高,价格更具竞争能力。实际使用LED的理由很简单,就是具有高可靠性和更长的寿命,在不需要更换的地方为终端用户提供免维护的产品。为了在LCD应用中提供均匀的背光,几个白色LED通常沿着LCD的一个边安装。LED的数量正比于LCD的尺寸。对于中等尺寸(7-10英吋),通常共使用20-40个LED。这些LED通常被连接成平行的3个或更多的LED串。为了减少连接点,许多LCD只提供一个2端接口。这里,所有的LED串必须在内部平行连接,然后连接到一个单电源上。驱动类型为了在中等LCD尺寸的应用中获得所期望的亮度,要求驱动器在所有的工作条件下能够为LED提供一个可调整的电流。通常,采用两种

30、LED驱动技术:即容性电荷泵和基于电感的交换式稳压器。本文将集中讨论能够为LED提供1-6W功率的电感式转换器LED驱动电路。电荷泵型LED驱动如今在手机和其它小尺寸的LCD背光应用中普遍使用,原因在于它们的高亮度、低成本和实现容易。电荷泵所需要的外部零组件只有3只或4只电容,且没有电感。不过,其输出功率有限。虽然一些大功率快闪型LED电荷泵能够提供高达2W的功率,其输出电压最大只能到6V,因此无法驱动2只以上串联的LED。电荷泵中的通道数量(通常为6个)决定了LED的数量。由于更多的通道意味着需要更多的接脚和更大的封装,因此电荷泵限制了在中等尺寸面板中的应用。LED正向电压(VF),LED电

31、流以及电源电压范围的不同组合,决定了所需的电感型转换LED驱动器的类型,LED VF随着电流、温度和LED型号的不同而变化。出现在最低温度时的最大VF是选择LED驱动电路结构的关键参数,通常是在线性结构、降压或升压结构中进行选择。本文中假定最大VF为3.8V。当选择LED驱动IC时,关键参数包括开关电流极限、最大输出电压,以及需要保护开路LED条件所需的过压保护阈值等。像电感和电容这类外部零组件也需要仔细选择。应用实例以8英吋的LCD模块为例,包括总共9串(每串3只)白色LED组成的背光(图1)。LED串的总电压(LED的VF为3.3V)通常为10V(33.3V)。每只LED的电流为20mA,

32、则总驱动电流为180mA(920),LED总功耗为1.8W。用一个AC电源配接器提供一个5V电源。一个基于电感的LED驱动器非常适用于该应用。 电感型转换器提高LED照明效率上网时间:2009-06-10 来源:光电新闻网首先计算处理2W的负载需要多大的开关电流。假定效率为80%,输入电流等于VoutIout/Vin效率=100.18/50.8=450mA。CAT4139电感型升压LED驱动器具有750mA(最小值)的驱动能力,故很适合于该应用。电感的电流额定值应该能够处理LED驱动峰值开关电流且不进入饱和。一旦出现饱和,就会出现电流突波,因为此时电感的功能便成了一只电阻,电路不再按照预期工作

33、。合适的电感额定电流应该大于等于80mA。工作期间LED的最大输出电压应该低于额定最大输出电压。由于3只LED串联,在冷温下,总正向电压可能高达11.4V(33.8V)。24V的开路LED检测阈值远高于其极限值。如果LED断开,输出电压将会上升并保持在30V,此时组件处于低功率模式,从电源吸纳的电流仅有几毫安。30V额定输出电压的电容是合适的。现在考虑由12V电源供电的一只6W LED灯。可以用6只高亮度白色LED串联连接来实现,用一个300mA的固定电流来驱动,典型的正向电压为3.3V。LED串的电压通常为20V,在冷温将会增加到23V(63.8V)。该电压对于CAT4139这类组件过高。需

34、要利用向CAT4240这类具有更高电压的升压型LED驱动器来驱动负载。CAT4240升压LED驱动器的过压检测阈值为40V,适用于串联灯数高达10只的LED串。选用降压型开关电源当电源电压高于总LED正向电压时,可以选用一个线性电流源或者开关降压稳压器来为LED提供恒流。不过线性电流源有一个缺陷,即耗散在稳压器中的功耗正比于电源到负载的电压差。开关电源的效率较高,能够避免任何较大的热量耗散在IC上,且工作温度接近或者略为高于环境温度。图2说明了如何利用CAT4201从一个24V电源来驱动5只1W的LED。LED电流由外部电阻R1来设定。CAT4201降压LED驱动器利用两阶段开关作业来提供精确

35、的平均电流。在第一阶段,位于内部的CAT4201 FET开关将SW端连接到地,使电流上升并对电感充电。 图2:使用CAT4201驱动5个1W的LED。电感两端的电压基本上等于24V减去LED的压降。一旦电流达到预定的峰值,内部开关就切断,而电流则继续流过萧特基二极管,直到电感放电为止。当电感的电流降到0时,将重复上述过程,因而电感电流的波形为三角形。本例中,开关频率约为260kHz。LED两端的电容C2将LED的电流突波减到最小。采用大电容会将突波减到更小。本例中的总转换器效率(LED功率除以来自VBAT的功率)可达94%。在调节过程中LED电流保持完好,只要VBAT高于总VF+3V。低于该电

36、平时,LED电流将线性降低。针对特定应用,必须选配合适的交换式稳压器和外部零组件。交换式稳压器的高效率使得在电源管理电路中的热耗散不再是一个问题,而用户得到的好处则是节省了能源。线性电流稳压器IC能够提供固有的低噪声性能(没有开关),但由于封装温度的限制,只适用于小电流应用。当用来驱动中规模尺寸的面板和通用照明应用时,电感型转换器LED驱动器是可选的解决方案,可以实现良好控制的LED和最佳的总发光效率。选择合适的电感型转换器有助提升效率,而实际上是升压或是降压,则取决于应用的电源和LED的配置结构。AC直接驱动LED光源技术上网时间:2009-06-05 来源:中国LED网中心议题: AC L

37、ED灯具的优点 AC LED光源的工作原理 AC LED的典型应用技术 解决方案: 细LED晶粒特殊排列组合 充液LED固态照明设计 LED光源作为绿色、节能、省电、长寿命的第四代照明灯具而异军突起、广受关注、如火如荼地迅速发展。目前的LED光源是低电压(VF=23.6V)、大电流(IF=2001500mA)工作的半导体器件,必须提供合适的直流流才能正常发光。直流(DC)驱动LED光源发光的技术已经越来越成熟,由于我们日常照明使用的电源是高压交流(AC 100220V),所以必须使用降压的技术来获得较低的电压,常用的是变压器或开关电源降压,然后将交流(AC)变换成直流(DC),再变换成直流恒流

38、源,才能促使LED光源发光。因此直流驱动LED光源的系统应用方案必然是:变压器+整流(或开关电源)+恒流源(图1)。LED灯具里必然要有一定的空间来安置这个模块,但是对于E27标准螺口的灯具来说空间十分有限,很难安置。无论是经由变压器+整流或是开关电源降压,系统都会有一定量的损耗,DC LED在交流、直流之间转换时约15%30%的电力被损耗,系统效率很难做到90%以上。如果能用交流(AC)直接驱动LED光源发光,系统应用方案将大大简化,系统效率将很轻松地达到90%以上。 图1 直流驱动LED光源的系统应用方案韩国公司早在2005年已发明可以用交流直接驱动使其发光的AC LED,其次是美国 II

39、I-N Technology,3N技术开发MOCVD生长技术基础上的氮化镓衬底,可以增进照明和传感器的应用,并降低成本和提高生产效率。对大大小小的硅发光二极管提供6英寸生产技术。3N发明的单芯片交流发光二极管(AC LED) ,建立了全面的专利组合,以保护和改善技术,牢固地确立其专有的立场,是首屈一指的大规模商业化生产的交流发光二极管产品。中国台湾省“工业技术研究院”2008年也完成可产业化生产并有实际应用系统方案的AC LED产品,可直接插电于60Hz或更高频率的AC 110V 交流压使其交流发光,应用于指示灯、霓虹灯、低瓦数照明灯,能有效解决现有 LED 无法直接在交流源下使用,造成产品应

40、用成本较高的缺点。台湾工研院的On Chip AC LED(片上AC LED)因此获得素有美国产业创新奥斯卡奖之称的2008年R&D 100 Award大奖。现在全世界只有美国、韩国与中国台湾有此技术,台湾工研院开发出白光、蓝光及绿光AC LED的制程技术,不仅与国际同步,也是全球领先者之一。 AC LED灯具的优点与白炽灯、卤素灯、荧光日光灯、荧光节能灯、直流LED灯相比,AC LED灯具有更节能省电、更长寿、更有能效的高性价比。AC LED发光省去了成本不菲的AC/DC转换器和恒流源。交流LED与现有的照明灯具性能比较如表1所示。表1 交流LED与现有的照明灯具性能比较上一页123下一AC

41、直接驱动LED光源技术上网时间:2009-06-05 来源:中国LED网AC LED光源超细晶粒采用特殊交错的矩阵排列AC LED光源的重大技术突破是超细LED晶粒在封装时的特殊排列组合技术,同时利用LED PN结的二极管特性兼作整流,半导体制程在其中扮演着相当重要的角色。AC LED通过半导体制程整合成一堆微小晶粒,采用交错的矩阵式排列工艺,并加入桥式电路至芯片设计,使AC电流可双向导通,实现发光。晶粒的排列如图2所示,左图是AC LED晶粒采用交错的矩阵式排列示意图,右小图是实际AC LED晶粒排列照片,AC LED晶粒在接上交流后通体发光,因此只需要二根引线导入交流源即能发光工作。 图2

42、 AC LED晶粒排列照片与示意图AC LED光源的工作原理AC LED光源的工作原理如图3,将一堆LED微小晶粒采用交错的矩阵式排列工艺均分为五串,AC LED晶粒串组成类似一个整流桥,整流桥的两端分别联接交流源,另两端联接一串LED晶粒,交流的正半周沿蓝色通路流动,3串LED晶粒发光,负半周沿绿色通路流动,又有3串LED晶粒发光,四个桥臂上的LED晶粒轮番发光,相对桥臂上的LED晶粒同时发光,中间一串LED晶粒因共用而一直在发光。在60Hz的交流中会以每秒60次的频率轮替点亮。整流桥取得的直流是脉动直流,LED的发光也是闪动的,LED有断电余辉续光的特性,余辉可保持几十微秒,因人眼对流动光

43、点记忆是有惰性的,结果人眼对LED光源的发光+余辉的工作模式解读是连续在发光。LED有一半时间在工作,有一半时间在休息,因而发热得以减少40%20%。因此AC LED的使用寿命较DC LED长。 图3 AC LED光源的工作原理AC LED成熟的产品如首尔用于AC110V的AX3201、AX3211和用于220V的AX3221、AX3231。用于AC110V功率在3.3W4W,工作电流40mA;用于AC220V功率在3.3W-4W,工作电流20mA(图4)。LED晶粒直接邦定在铜铝基板上。引脚如图5所示。 图4 首尔半导体的AC LED 图5 AC LED引脚图AC直接驱动LED光源技术上网时

44、间:2009-06-05 来源:中国LED网AC LED的典型应用技术AC LED的典型应用电原理图如图6所示十分简单,在AC LED两端分别串入正温度系数热敏电阻PTC,和限流电阻R1、R2、R3,接上110V或220V交流即可进入照明工作。LED在大批量生产时,其阻抗有一定的离散性,AC LED也如此,为便于下游厂家的大批量应用,LED光源生产厂商在出厂时对批量生产的产品按阻抗分档,客户在使用时可按LED光源厂家提供的VF分档表查用相应阻值的限流电阻,如表2所示是AX3221/AX3231的VF分档与限流电阻表。 图6 AC LED的典型应用电原理图 表2 AX3221/AX3231的VF

45、分档与限流电阻表AC LED的发展AC LED在家用电力上的方便性,不需要像DC LED一样另外得帮灯具装上一个交流转直流的转换器,不但节省了这颗转换器的成本,也避免LED光源本身还没坏,但转换器却先坏掉的窘境。交直流转换器可说是一种随着时间会老化、坏掉的电子元器件,其寿命比LED光源本身更短,故目前很多LED灯具坏掉,并不是LED光源寿命已尽,而是LED灯具使用的交直流转换器先坏掉了。AC LED还有一个特性,就是因为其工艺采用交错的矩阵式排列,是轮流点亮的,在60Hz的交流中会以每秒60次的频率轮替点亮,也让AC LED的使用寿命较DC LED长。不过,AC LED现阶段有两个缺点,其一是

46、发光效率并没有DC LED高,这是因为DC LED发展目前是主流,AC LED刚刚起步,AC LED的发光效率是可以追上,甚至超过DC LED的。其二是AC LED有触电的风险。故AC LED如果要应用在LED照明灯具上,应避免金属鳍片的裸露,而应是间接地把热带走,这也就是发展新的充液LED固态照明灯具的设计核心概念。AC LED刚刚步入成长期,目前在发光亮度、功率等方面还不够理想,但AC LED的应用简便、无需变压转换器和恒流源,以及低成本、高效率已显现强大的生命力。AC LED的技术在飞跃发展,要不了几年,高亮度、大功率、低成本的产品将大量面世。STM32 :基于STM32控制的太阳能-L

47、ED街灯解决方案上网时间:2009-05-28 来源:ST公司中心议题: 太阳能与LED结合是街灯发展的必然趋势 太阳能-LED街灯方案的系统结构与实现的原理 MCU STM32的核心控制作用 解决方案: MPPT算法来优化工作效率,采用不同模式给蓄电池充电 自动判断白天、黑夜并以此控制蓄电池的充电和LED的恒流照明 同时还提供监控保护、温度监测、状态输出等功能 随着化石类能源的日益减少,以及温室气体的过度排放导致全球变暖问题越来越受到重视,人们一方面在积极开发各类可再生新能源,另一方面也在倡导节能减排的绿色环保技术。太阳能作为取之不尽、用之不竭的清洁能源,成为众多可再生能源的重要代表;而在照

48、明领域,寿命长、节能、安全、绿色环保、色彩丰富、微型化的LED固态照明也已被公认为世界一种节能环保的重要途径。太阳能-LED街灯同时整合了这两者的优势,利用清洁能源以及高效率的LED实现绿色照明。本文介绍的太阳能-LED街灯方案,能自动检测环境光以控制路灯的工作状态,最大功率点追踪(MPPT)保证最大太阳能电池板效率,恒电流控制LED,并带有蓄电池状态输出以及用户可设定LED工作时间等功能。系统结构与实现原理 目前街灯普遍使用的是市电供电的高压钠灯结构,其中高压钠灯的电子驱动部分需要把市电从交流转化为直流,再逆变到交流来驱动,导致系统效率较低;而且由于使用的是市电,需要铺设复杂、昂贵的管线。太

49、阳能-LED街灯则不具备以上的问题,由于太阳能电池板输出的是直流电能,而LED也是直流驱动光源,两者的结合更能提高整个系统的效率;太阳能的使用也免去了铺设电缆及其相关工程的费用。 太阳能电池板在太阳光的照射下,其内部PN结会形成新的电子空穴对,在一个回路里就能产生直流电流;这个电流流入控制器,会以某种方式给蓄电池充电。蓄电池在白天的时候会接受充电,而在晚上则会提供能量给LED。LED的工作是通过控制器进行的,控制器在保证LED恒流工作的同时,也会监测LED的状态以及控制工作时间长短。连续阴雨天以及蓄电池电能不足的情况下,控制器会发出控制信号来启动外部的市电供电系统(不包含在控制器中),保证LE

50、D的正常工作。外部的市电供电系统只是作为后备能源,只有在蓄电池电能不足的情况下才会被使用。蓄电池的充电完全只是通过太阳能来实现的,以确保最大限度使用太阳能。 太阳能电池板进来后会首先经过一个开关MOS管KCHG连接到直流/直流变换器(蓄电池充电电路),此变换器的输出连接到蓄电池两端(实际电路里会先通过一个保险丝再连到蓄电池上)。加上KCHG有两个作用:一是防止太阳能电池输出较低时由蓄电池过来的反充电流;二是当太阳能电池板极性接反时起到保护电路的作用。直流/直流变换器采用降压拓扑结构,拓扑结构的选择不仅得考虑太阳能电池板最大功率点电压和蓄电池最大电压,而且同时得兼顾效率和成本。蓄电池和LED之间

51、也是通过一个直流/直流变换器(LED驱动电路),对LED要采用恒流控制方式,考虑到蓄电池电压的波动范围以及LED的工作电压范围,设计电路中采用反激式拓扑结构来保证恒流输出。反激式拓扑的效率一般没有简单的升压或者降压电路高,如果要提升系统的效率,可以通过优化蓄电池电压与LED电压的关系来采用升压或者降压电路,提升效率并可能进一步减低成本。上一STM32 :基于STM32控制的太阳能-LED街灯解决方案上网时间:2009-05-28 来源:ST公司整个控制器的控制是通过一个MCU来实现,MCU的主要工作包括以下几点:一是采用MPPT算法来优化太阳能电池板工作效率;二是针对蓄电池不同状态采用合适的充

52、电模式;三是保证LED驱动电路的恒流输出;四是判断白天黑夜并以此来切换蓄电池充电和放电模式;最后就是提供监控保护、温度监测、状态输出和用户控制输入检测(DIP14)等功能。MCU的选择最主要是满足ADC、GPIO和外部中断的需要,不需要单纯追求速度。表1列出了实际电路中MCU外围设备的使用情况,考虑到以后扩展的需要,主控芯片使用STM32F101RXT6 (意法半导体最新款STM32系列MCU,采用Cortex-M3内核)。 表1: MCU外设分配。控制器辅助电源直接从蓄电池变换而来,蓄电池输入通过线性电源(L78L12)得到12V,供给逻辑电路和PWM开关信号放大;3.3V通过12V接开关电

53、源(L5970D)而来,主要给MCU和周边电路供电,之所以用开关电源是为了提高转换效率(减少蓄电池耗电)以及在以后扩展系统时可以提供足够负载,当然,为了减少成本,完全可以用线性电源来实现。控制器主要功能 控制器的主要功能包括两个方面:蓄电池充电以及蓄电池给LED供电。 蓄电池充电 当系统检测到环境光充足,控制器就会进入充电模式。蓄电池充电有两个比较重要的电压值:深度放电电压和浮充充电电压。前者代表在正常使用情况下蓄电池电能被用完的状态, 而后者则代表蓄电池充电的最高限制电压,这些参数应该从蓄电池产品手册上可以查到。在设计电路中针对12V蓄电池,分别设置深度放电电压为11V和浮充充电电压为13.

54、8V(皆为在室温条件下的电压值,软件中这两个值增加了相应的温度补偿),具体充电模式如表2所示。从表2中可以看到涓流充电模式和恒流充电模式会用到MPPT算法,MPPT算法有很多种方式可以实现,业界有不少的论文对此进行了探讨,总的来说各有优劣,设计电路中采用相对简单的扰动观察法来实现(Perturbance and Observation)。这个控制方法的基本思想是通过增大或者减少充电电路开关信号PWMCHG占空比,然后观察输出功率是变大还是变小,以此来决定下一步是增大还是减少占空比。由于太阳能板的输出变化相对比较缓慢,而且是单极点,所以这种方式还是能收到比较好的效果。蓄电池放电 当检测到周围环境光线不足时就会进入蓄电池给LED供电模式。LED电流通过高位电流检测芯片(TSC101AILT)采样送回MCU,由MCU通过调整开关信号PWMDRV占空比来获得恒定输出电流。为了达到节能的目的,LED的恒定电流值会根据系统检测的环境光强度来调整:当环境光由亮变暗时,系统的输出电流也会相应从小到大;当环境光完全暗下来时,系统的输出电流也达到最大值。除了由环境光控制LED的输出,用户还可以通过设定开关DIPl4的状态来开启时间控制功能, 系统会根据D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论