近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计表_第1页
近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计表_第2页
近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计表_第3页
近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计表_第4页
近五年(含2017)新课标I卷高考理科解析几何考点分布和考题统计表_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、全国1卷201320142015201620174圆锥曲线:双曲线、离心率双曲线焦点到渐近线的距离5向量数量积;双曲线的标准方程双曲线的性质910圆锥曲线:椭圆、韦达定理抛物线焦点三角形抛物线的性质抛物线与过焦点弦长问题11121314椭圆的顶点、圆的标准方程15双曲线与点到线的距离161920解析几何:轨迹方程(定义法)、韦达定理解析几何:椭圆抛物线的切线;直线与抛物线位置关系;探索新问题;圆锥曲线(圆、椭圆)综合问题直线与圆锥曲线(椭圆)的位置关系,弦长公式,韦达定理,过定点问题。【2013卷】4、已知双曲线:()的离心率为,则的渐近线方程为. . . .【命题意图】本题主要考查双曲线的几

2、何性质,是简单题.【解析】由题知,即=,=,=,的渐近线方程为,故选.10、已知椭圆1(ab0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点。若AB的中点坐标为(1,1),则E的方程为 ()A、1B、1C、1D、1【命题意图】本题主要考查椭圆中点弦的问题,是中档题.【解析】设,则=2,=2, 得,=,又=,=,又9=,解得=9,=18,椭圆方程为,故选D.(20)(本小题满分12分)已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 C.()求C的方程;()是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 【命题意图】【解析】由已知得圆的圆心

3、为(-1,0),半径=1,圆的圆心为(1,0),半径=3.设动圆的圆心为(,),半径为R.()圆与圆外切且与圆内切,|PM|+|PN|=4,由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.()对于曲线C上任意一点(,),由于|PM|-|PN|=2,R2,当且仅当圆P的圆心为(2,0)时,R=2.当圆P的半径最长时,其方程为,当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),设:,由于圆M相切得,解得.当=时,将代入并整理得,解得=,|AB|=.当=时,由图形的对称性可

4、知|AB|=,综上,|AB|=或|AB|=.【2014卷】4.已知是双曲线:的一个焦点,则点到的一条渐近线的距离为. .3 . .【答案】:A【解析】:由:,得,设,一条渐近线,即,则点到的一条渐近线的距离=,选A. . 10.已知抛物线:的焦点为,准线为,是上一点,是直线与的一个交点,若,则=. . .3 .2【答案】:C【解析】:过Q作QM直线L于M,又,由抛物线定义知选C20. (本小题满分12分) 已知点(0,-2),椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点.()求的方程;()设过点的直线与相交于两点,当的面积最大时,求的方程.【解析】:() 设(),由条件知,得= 又

5、,所以a=2=, ,故的方程. .6分()依题意当轴不合题意,故设直线l:,设 将代入,得,当,即时,从而= +又点O到直线PQ的距离,所以OPQ的面积 ,设,则,当且仅当,等号成立,且满足,所以当OPQ的面积最大时,的方程为: 或. 12分【2015卷】(5)已知M()是双曲线C:上的一点,是C上的两个焦点,若,则的取值范围是( )(A)(-,) (B)(-,)(C)(,) (D)(,)【答案】A【解析】由题知,所以= =,解得,故选A.【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.【名师点睛】本题考查利用向量数量积的坐标形式将表示为关于点M坐标的函数,利用点M在双曲

6、线上,消去x0,根据题意化为关于的不等式,即可解出的范围,是基础题,将表示为的函数是解本题的关键.(14)一个圆经过椭圆的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为 .【答案】(20)(本小题满分12分)在直角坐标系中,曲线C:y=与直线(0)交与M,N两点,()当k=0时,分别求C在点M和N处的切线方程;()y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由.【答案】()或()存在【2016卷】(5)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(1,3) (B)(1,) (C)(0,3) (D)(0,)【答案】A【解析】由题意知:双曲线的焦

7、点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A【考点】双曲线的性质【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c而不是c,这一点易出错.(10)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B【解析】试题分析:如图,设抛物线方程为,圆的半径为r,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,即,解得,即的焦点到准线的距离为4,故选B.【考点】抛物线的性质【名师点睛】本题主要考

8、查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.(20)(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【答案】(I)();(II)【解析】试题分析:(I)利用椭圆定义求方程;(II)把面积表示为关于斜率k的函数,再求最值。试题解析:(I)因

9、为,故,所以,故.又圆的标准方程为,从而,所以.由题设得,由椭圆定义可得点的轨迹方程为:().(II)当与轴不垂直时,设的方程为,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,四边形的面积为12.综上,四边形面积的取值范围为.【考点】圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、求最值、求参数取值范围等几部分组成.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及

10、化归思想的应用.【2017卷】10已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A16B14C12D10【答案】A15 已知双曲线C:(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若MAN=60,则C的离心率为 .【答案】【解析】如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且,而,所以,点到直线的距离,在中,代入计算得,即,由得,所以.20.(12分)已知椭圆C:(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为1,证明:l过定点.【解析】(1)由于,两点关于y轴对称,故由题设知C经过,两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为.(2)设直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论