蛋白质的合成与修饰.ppt_第1页
蛋白质的合成与修饰.ppt_第2页
蛋白质的合成与修饰.ppt_第3页
蛋白质的合成与修饰.ppt_第4页
蛋白质的合成与修饰.ppt_第5页
已阅读5页,还剩113页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章 蛋白质的合成与修饰 Translation,Artificial synthesis and modification,本章的主要内容: 1. 翻译的生物学意义; 2. 遗传密码的特性和线粒体密码的例外; 3. 翻译体系的主要组成及其功能; 4. 原核生物和真核生物蛋白质生物合成的异同点; 5. 蛋白质合成后的加工、运输与定位; 6. 蛋白质的化学合成与人工修饰。,第一节 蛋白质的生物合成翻译,The Biosynthesis of Protein -Translation,在细胞质中,以mRNA为模板,在核糖体、tRNA和多种蛋白因子等的共同作用下,将mRNA中由核苷酸排列顺序决定的遗传信息转变成由20种氨基酸组成的蛋白质的过程。 这一过程犹如电报的翻译过程,故又将蛋白质的生物合成称为翻译(translation)。,翻译(translation):,转录和翻译统称为基因表达(gene expression)。,前 言,翻译的生物学意义?,可以说,没有蛋白质,就没有生命!,概括起来讲,蛋白质具有以下几方面的功能: 1)催化:酶蛋白; 5)调节:激素、组蛋白; 2)防御:Ab、ABP、IFN等; 6)支持:膜系统; 3)运动:肌球(动)蛋白; 7)运输:ApoE、血红素; 4)营养贮存:卵清蛋白; 8)参与遗传过程 9)其他:信号转导等。,蛋白质是生命活动的物质基础,几乎所有生物的生命活动过程都离不开蛋白质。蛋白质的种类成千上万,其功能千差万别。例如:酶蛋白;激素;膜蛋白;抗体;受体等。,3-1-1 参与翻译过程的物质与功能,参与翻译过程的物质共包括: mRNA (Messenger RNA) tRNA (Transfer RNA) Ribosome Amino acids(AA) Aminoacyl-tRNA synthetase(氨酰基-tRNA合成酶) Kinds of Translation Factors,3-1-1 Components of Translation System and Their Functions,一、Structure and Function of mRNA mRNA(Messenger RNA) is the intermediate that represents one strand of a gene coding for protein. Its coding region is related to the protein sequence by the triplet genetic code. (一)mRNA的结构特点,An mRNA contains a series of codons that interact with the anticodons of aminoacyl-tRNAs so that a corresponding series of amino acids is incorporated into a polypeptide chain.,Figure 6.16 Ribosome-binding sites on mRNA can be recovered from initiation complexes. They include the upstream Shine-Dalgarno sequence and the initiation codon.,原核生物mRNA的结构特点:,原核生物mRNA的结构特点,The Shine-Dalgarno sequence(SD序列) is the polypurine sequence AGGAGG centered about 10 bp before the AUG initiation codon on bacterial mRNA. It is complementary to the sequence at the 3 end of 16S rRNA.,真核生物mRNA的结构特点:,Functions of Cap: Protection of the mRNA from degradation. Enhancement of the mRNAs translatability. Transport of the mRNA out of the nucleus. Proper splicing of the pre-mRNA.,Function of Polyadenylation : Most eukaryotic mRNAs and their precursors have a chain of AMP residues about 250 nucleotides long at their 3-ends. This poly(A) is added post-transcriptionally by poly(A) polymerase. Polyadenylation signals: AAUAAA Functions : Poly(A) enhances both the lifetime and translatability of mRNA.,The only three sequences needed for splicing are : short consensus sequences at the 5 and 3splicing sites and at the branch site.,The ends of nuclear introns are defined by the GU-AG rule.,Splicing signals:,真核生物与原核生物mRNA结构特点比较: 1. 真核生物的mRNA初始转录物由内含子和外显子组成,需要进行转录后加工: 1)将内含子剪掉,将外显子重新连接起来-剪接(splicing), 2)在5-端加帽,3-端加poly(A)尾,才能形成成熟mRNA; 而原核生物的初始转录物即为成熟的mRNA,不需要转录后的加工。 2. 真核生物的成熟mRNA需要从细胞核中进入细胞质,才能参与蛋白质的翻译;而原核生物的转录与翻译偶联在一起。 真核生物mRNA为单顺反子;原核生物mRNA为多顺反子。 原核生物的mRNA的5-端有SD序列。许多真核mRNA的AUG上游存在Kozak序列(CCACC)。,(二)Genetic Codons(遗传密码), Seleno-Cys-tRNA UGA; Pyrrolysine UAG,(三) Properties of Genetic Codons 三联体,连续性,不重叠,兼并性,兼职,通用 性等。但存在例外。,1. ORF(开放读框),2. 兼并性(degeneracy) 多种密码子编码一种氨基酸。,3. 密码子的例外 1)在支原体:UGA Trp(色); 2)在纤毛虫:UAA和UAG Glu(谷); 3)在人的线粒体: UGA(终止密码子) Trp(色) ; AGA,AGG(精) 终止密码子。另加UAA、UAG, 线粒体共有4个终止密码子; 内部蛋氨酸的密码子有2个:AUG和AUA;起始密码子 有4个:AUN; 4)在酵母线粒体:除上述3点外,还有CUA亮 Thr(苏)。,Transfer RNA (tRNA) is the intermediate in protein synthesis that interprets the genetic code. Each tRNA can be linked to an amino acid. The tRNA has an anticodon sequence that comple- mentary to a triplet codon representing the amino acid.,二、 Structure and Function of tRNA,A tRNA has a sequence of 74-95 bases that folds into a clover-leaf secondary structure with four constant arms (and an additional arm in the longer tRNAs).,(一)Secondary Structure of tRNA,The cloverleaf: the structure of tRNA drawn in two dimensions, forming four distinct arm-loops.,The acceptor arm consists of a base-paired stem that ends in an unpaired sequence whose free 2- or 3-OH group can be linked to an amino acid. The TC arm is named for the presence of this triplet sequence. ( stands for pseudouridine, a modified base). The anticodon arm always contains the anticodon triplet in the center of the loop. The D arm is named for its content of the base Dihydrouridine (another of the modified bases in tRNA). The extra arm lies between the TC and anticodon arms and varies from 321 bases. tRNAs are called class I(35bases) if they lack it, and class II (1321 bases including 5bp in stem) if they have it.,This tRNA is used only for initiation. It recognizes the codons AUG or GUG(occasionally UUG). AUG GUG(1/2) UUG(1/4). Formylation is not strictly necessary, because nonformylated Met-tRNAf can function as an initiator, but it improves the efficiency with which the Met-tRNAf is used, because it is one of the features recognized by the factor IF-2 that binds the initiator tRNA. The bases that face one another at the last position of the stem to which the amino acid is connected are paired in all tRNAs except tRNAf-Met. Mutations that create a base pair in this position of tRNAf-Met allow it to function in elongation. The absence of this pair is therefore important in preventing tRNAf-Met from being used in elongation. It is also needed for the formylation reaction. A series of 3 GC pairs in the stem that precedes the loop containing the anticodon is unique to tRNAf-Met. These base pairs are required to allow the fMet-tRNAf to be inserted directly into the P site.,(二)tRNA的三级结构 所有的tRNA的三级结构经X-ray 衍射发现,都呈倒L形,见下图。,A molecular model of the structure of yeast tRNAPhe is shown in Figure 5.5.,(三)Functions of tRNA,AA + ATP AA-AMP + PPi (氨基酸活化) AA-AMP + tRNA 氨酰基-tRNA + AMP tRNA正确识别和荷载氨基酸的原因:首先与氨酰基-tRNA合成酶的结构有关;其次与反密码子有关;副密码子的作用非常重要。 副密码子(paracodon):tRNA分子上一些与氨酰基-tRNA正确形成有关的碱基,如G3-U70等。,(四)tRNA的丰富度与密码子的使用频率 同功tRNA(isoaccepting tRNA) :识别并携带同一种氨基酸 的不同tRNA。同功tRNA由同一种氨酰基-tRNA合成酶催化合 成氨酰基-tRNA。 密码子的使用频率: 在同一种细胞中,不同tRNA的数量多少不同,导致了编 码同一种AA的不同密码子的使用频率不同。 例如:大肠杆菌核糖体蛋白1209个密码子,其中苏氨酸的 密码子:ACU 38次、ACC 26次、ACA 3次、ACG 0次。 密码子优化:,Codon usage tabulated from the GenBank Genetic Sequence Data Volume 16, Supplement, Nucleic Acids Research.P315402,摇摆假说(wobble hypothesis):编码一种氨基酸的不同密码子是否需要不同的tRNA来识别呢? 不是的。一种tRNA的反密码子可识别具有兼并性的密码子。 为什么?原因就是反密码子的5-端碱基具有摇摆性,一方面它的自由度大;另一方面它很少是U,几乎不是A,如是A,则被修饰成I(次黄嘌呤),I可与U、C、A配对;最后,在RNA中,G可和U配对。所以,一种tRNA的反密码子可识别几种不同的密码子。,(五) Wobble hypothesis(摇摆假说),The wobble hypothesis accounts for the ability of a tRNA to recognize more than one codon by unusual (non-GC, non-AT) pairing with the third base of a codon.,三、 Aminoacyl-tRNA Synthetases In spite of their common function, synthetases are a rather diverse group of proteins. The individual subunits vary from 40-110 kDa, and the enzymes may be monomeric, dimeric, or tetrameric. Homologies between them are rare.,Aminoacyl-tRNA synthetases are divided into the class I and class II groups by sequence and structural similarities.,四、 核糖体的结构与功能,(一)核糖体的组成与结构,RNA的特异序列和功能 含CGAAC与GTCG互补 CCUCCU与SD序列互补 有GAUC和TCG互补 和Capm7G结合,Electron micrographs of subunits and complete bacterial ribosomes are shown in Figure 6.2. Together with models in the corresponding orientation. The complete 70S ribosome has an asymmetric construction. The partition between the head and body of the small subunit is aligned with the notch of the large subunit, so that the platform of the small subunit fits into the large subunit. There is a cavity between the subunits which contains some of the important sites.,3-1-2 Process of Protein Bio-Synthesis,The main cellular components involved in the process of protein synthesis: mRNA (Messenger RNA): Template of Translatiom tRNA (Transfer RNA): Carrier of Amino acids(adaptor) Ribosome: A Small migrating factory of Translation Aminoacyl-tRNA synthetase(氨酰基-tRNA合成酶) Kinds of Translation Factors: 蛋白质合成的原料是细胞中的20种氨基酸(来源?),反应所需的能量由ATP与GTP提供。,TAB. Components Required for the Five Major Stages of Protein Synthesis in E. coli,Four Stages are involved in the Process of Protein Biosynthesis: Stage 1: Activation of Amino Acids Stage 2: Initiation Stage 3: Elongation Stage 4: Termination and Release,一、 Activation of Amino Acids and Synthesis of Aminoacyl-tRNA,1. 氨基酸的激活与氨酰基-tRNA的合成过程 氨基酸不能直接与模板相结合,必须首先与相应的tRNA结合,形成氨酰基tRNA。这一过程就是氨基酸的激活。 将氨基酸接合于tRNA以形成氨酰基tRNA的激活反应是在氨酰基-tRNA合成酶的催化作用下进行的,需要ATP提供能量 。这个反应是不可逆转的 。 AA + ATP AA-AMP + PPi (氨基酸活化) AA-AMP + tRNA 氨酰基-tRNA + AMP,AA + ATP AA-AMP + PPi (氨基酸活化),Synthetase Class I Synthetase Class II,氨酰基-tRNA是蛋白质合成过程中的一个关键性物质,它们的合成不仅仅是一个携带氨基酸的过程。其重要意义在于: (1)它为肽键的形成提供能量(-30.51kJ); (2)tRNA上的反密码子与mRNA上的密码子识别,执行遗传信息的解读过程; (3)保证了蛋白质合成的准确性。,2. 氨酰基-tRNA合成过程中的校正(proofreading)机制,Protein biosynthesis is generally accurate. But it is thought to lie in the range of 1 error for every 104 - 105 amino acids incorporated. 如何保证翻译的正确性? (1)氨酰基-tRNA合成酶能够正确识别其底物氨基酸的侧链。有些是高度专一的,有些则专一性不高。 (2)对专一性不高的氨酰基-tRNA合成酶的校正。在2个阶段进行校正:对AA-AMP的水解;对氨酰基-tRNA的水解。tRNA发挥了重要作用。 (3)氨酰基-tRNA合成酶也必须识别正确的tRNA。 另外,还与tRNA的反密码子有关;副密码子的作用也非常重要。,二、原核生物蛋白质翻译过程,(一)原核生物蛋白质翻译的起始 1. 起始复合物的形成 (1) 起始因子、GTP、mRNA与30S小亚基结合: 原核起始因子有3种:IF1,IF2,和IF3。 IF1:IF1是一个小的碱性蛋白,它能增加IF2和IF3的活 性。IF1与16S rRNA的结合位点在A位点 。另外,IF1具有活化 GTP酶的作用。 IF2:具有很强的GTP酶活性,在肽链合成起始时催化 GTP水解。功能是生成IF2GTPfMet-tRNAMetf三元复合物,在 IF3存在下,使起始tRNA与核糖体小亚基结合。 IF3:IF3与16S rRNA相互作用位点在P位点附近。IF3 能通过促使mRNA的S-D序列与16S rRNA的3-端碱基配对,让 核糖体识别mRNA上的特异启动信号,又能刺激fMet-tRNAf与 核糖体结合在AUG上。,mRNA 和fMet-tRNA 结合于IF30SGTP聚合体上。在结 合时,fMet-tRNA与IF2-GTP复合物紧密接触。 在核糖体小亚基上的16S rRNA 3-端有一段顺序: 16S rRNA 3-UCCUCCPyA-5 (Py可以是任何嘧啶核苷酸) mRNA 5-AGGAGG-.AUG.3 正是由这样的配对将AUG(或GUG,UUG)密码子带到核糖体的起始位置上 。 fMet-tRNA 与小亚基上的A位点结合。,2. 70S起始复合物的形成 30S起始复合物一旦完全形成后,IF3即释放出来。50S大亚 基参加进来,并引起GTP水解和释放其它两个起始因子,最后 的复合物称为70S起始复合物。,IF1:IF1是一个小的碱性蛋白,它能增加IF2和IF3的活性。IF1与16S rRNA的结合位点在A位点 。另外,IF1具有活化GTP酶的作用。 IF2:具有很强的GTP酶活性,在肽链合成起始时催化GTP水解。功能是生成IF2GTPfMet-tRNAMetf三元复合物,在IF3存在下,使起始tRNA与核糖体小亚基结合。 IF3:与16S rRNA相互作用位点在P位点附近。IF3能通过促使mRNA的S-D序列与16S rRNA的3-端碱基配对,让核糖体识别mRNA上的特异启动信号,又能刺激fMet-tRNAf与核糖体结合在AUG上。,(二)多肽链的延伸、移位循环,从起始阶段形成的起始复合物可以接受第二个氨酰-tRNA,以形成蛋白质第一个肽键。在第二个氨酰基-tRNA进入A位点之后,便形成一个肽键,并产生出一个连接于第二个氨基酸的tRNA上的二肽。然后便发生移位,肽酰tRNA和与之结合的mRNA密码子协同转移至P位点。这个氨基酸加成过程一再重复,每次加上一个氨基酸,直至形成一条完整的多肽链。 肽链的延伸要求有延伸因子EF-TU和EF-TS参与。,Figure 6.20 EF-Tu-GTP places aminoacyl-tRNA on the ribosome and then is released as EF-Tu-GDP. EF-Ts is required to mediate the replacement of GDP by GTP. The reaction consumes GTP and releases GDP. The only aminoacyl-tRNA that cannot be recognized by EF-Tu-GTP is fMet-tRNAf, whose failure to bind prevents it from responding to internal AUG or GUG codons.,Figure 6.24 Binding of factors EF-Tu and EF-G alternates as ribosomes accept new aminoacyl-tRNA, form peptide bonds, and translocate.,Figure 6.21 Peptide bond formation takes place by reaction between the polypeptide of peptidyl-tRNA in the P site and the amino acid of aminoacyl-tRNA in the A site. Peptidyl transferase is the activity of the ribosomal 50S subunit that synthesizes a peptide bond when an amino acid is added to a growing polypeptide chain. The actual catalytic activity is a propery of the rRNA.,Figure 6.23 Models for translocation involve two stages. First, at peptide bond formation the aminoacyl end of the tRNA in the A site becomes located in the P site. Second, the anticodon end of the tRNA becomes located in the P site. Second, the anticodon end of the tRNA becomes located in the P site.,(三)多肽链合成的终止,Figure 6.27 Molecular mimicry enables the elongation factor Tu-tRNA complex, the translocation factor EF-G, and the release factors RF1/2-RF3 to bind to the same ribosomal site.,Figure 6.8 Initiation requires free ribosome subunits. When ribosomes are released at termination, they dissociate to generate free subunits. Initiation factors are present only on dissociated 30S subunits. When subunits reaassociate to give a functional ribosome at initiation, they release the factors.,三、真核生物蛋白质的生物合成,真核生物蛋白质合成与原核生物两者相比,密码相同,各种组分相似,亦有核糖体、tRNA及各种蛋白质因子。总的合成途径也相似,有起始、延伸及终止阶段,但也有不同之处。 (一)真核生物蛋白质合成的起始 真核生物的起始氨基酸是蛋氨酸。参与翻译起始反应的起始因子已发现有10几种。这个过程可分为3个步骤: 1. 43S前起始复合物的形成 起始因子eIF-2与GTP形成稳定复合物,后者与Met-tRNAMetI形成三元复合物,再与40S亚基形成43S前起始复合物。 2. 48S前起始复合物的形成 在起始因子eIF-4A,eIF-4B,eIF-4E和ATP的参与下,43S前起始复合物与mRNA结合。eIF-4A有使mRNA二级结构解旋的作用。eIF-4B则有结合mRNA并识别起始密码子AUG的作用。形成48S前起始复合物。,据Kozak等的研究,大多数起始密码子的上游存在CCACC(称为 Kozak序列 )AUGG。在43S前起始复合物沿mRNA向3端方向移动时,遇到CCACC序列时,即停止移动。起始密码子AUG的识别可能是通过与tRNA上的反密码子的作用。eIF-2也参与了这个识别过程。 3. 80S起始复合物的形成 48S前起始复合物与核糖体60S大亚基结合,便形成了80S起始复合物。 这一过程由GTP水解提供能量。各种起始因子释放出来,参与下一轮的起始复合物形成。,Figure 6.18 In eukaryotic initiation, eIF-2 forms a ternary complex with Met-tRNAf. The ternary complex binds to free 40S subunits, which attach to the 5 end of mRNA. Later in the reaction, GTP is hydrolyzed when eIF-2 is released in the form of eIF2-GDP. eIF-2B regenerates the active form.,Figure 6.19 Several eukaryotic initiation factors are required to unwind mRNA, bind the subunit initiation complex, and support joining with the large subunit.,1.肽链的延伸 真核生物的肽链延伸与原核相似,只是延伸因子EF-TU和EF-TS被eEF-1取代,而EF-G则被eEF-2取代。在真菌中,还要求第三种因子,即eEF-3的参与,以维持其翻译的准确性。 2.肽链的终止 真核生物肽链合成的终止仅涉及一个释放因子eRF。eRF分子量约为115kD。它可识别3种终止密码子:UAA,UAG,UGA。eRF在活化了肽酰转移酶释放新生的肽链后,即从核糖体上解离。解离要求GTP的水解。故肽链合成的终止需要消耗能量。,(二)肽链的延伸与终止,四、原核生物与真核生物翻译的比较 原核生物的翻译与转录偶联在一起,即边转录边翻译;而真核生物的翻译与转录不偶联。真核mRNA前体需经加工修饰成为成熟mRNA后,从核内输入细胞质,然后进行翻译。 真核生物蛋白质合成机构比原核生物复杂,起始步骤涉及起始因子众多,过程复杂。如起始氨基酸;核糖体组成;起始因子的种类等等。 真核生物蛋白质合成的调控复杂。 真核生物与原核生物的蛋白质合成可为不同的抑制剂所抑制。,3-1-3 蛋白质翻译后的加工,蛋白质的结构:一级、二级、三级、四级结构。 蛋白质变性: 天然态(折叠态) 变成变性态(伸展态) 体外蛋白质的复性: U I N,变性因素,快,慢,一、蛋白质的折叠 (一)体外蛋白质折叠的机制 总之,体外蛋白质的折叠可能是始于疏水坍塌,或始于转角,或始于共价键相互作用(如二硫键的形成)。 在折叠早期,可能这三种方式联合起作用。之后,可能沿着有限的多途径形成中间态(熔球态)。这个过程是快速的。最后再由中间态进入天然态,此过程比较慢,是折叠反应的限速步骤。,(二)体内蛋白质的折叠,体内环境复杂;需要助折叠蛋白 (folding helper)的参与,从而降低 了折叠的错误,提高了效率(95%); 在翻译结束之前即开始(邹氏学说)。 助折叠蛋白: 1. 酶 :蛋白质二硫键异构酶;肽酰脯氨酰顺反异构酶。 与新生肽链的折叠密切相关,加速蛋白质折叠过程。 2. 分子伴侣:细胞内帮助新生肽链正确组装,成为成熟 蛋白质,而本身却不是最终功能蛋白质分子的组成成分的分 子,都称为分子伴侣(molecular chaperone)。,Figure 8.5 Chaperone families have eukaryotic and bacterial counterparts (named in parentheses).,胁迫-70(stress-70)家族:,分子伴侣蛋白:胁迫70(stress70 )家族;分子伴侣(chaperonin)家族。广泛存在于原核和真核生物细胞中。,Figure 8.6 DnaJ assists the binding of DnaK (Hsp70), which assists the folding of nascent proteins. ATP hydrolysis drives conformational change. GrpE displaces the ADP; this causes the chaperones to be released. Multiple cycles of association and dissociation may occur during the folding of a substrate protein。,分子伴侣(chaperonin)家族:,Figure 8.8 GroEL forms an oligomer of two rings, each comprising a hollow cylinder made of 7 subunits.,Figure 8.9 Two rings of GroEL associate back to back to form a hollow cylinder. GroES forms a dome that covers the central cavity on one side. Protein substrates bind to the cavity in the distal ring.,二、蛋白质的修饰,(一)末端氨基的脱甲酰化和N端甲硫氨酸的切除 对起始氨基酸的修饰。 (二)多肽链的水解断裂: 胰岛素的修饰过程。 Prepro-insulin Pro-insulin insulin,Pre-peptide,C-peptide,图5. 人胰岛素原的分子结构模式图 Fig.5 Sketch of the Structure of Human Proinsulin,图6. 由胰岛素原转变为胰岛素 Fig.6 Proinsulin Changing into Insulin,(三)氨基酸侧链的修饰 二硫键的形成;羟化作用;氨基酸残基的交联;羧化作用;甲基化等。详细内容参见下表。 (四)糖基化:生成糖蛋白。膜蛋白和分泌蛋白多为糖蛋白。 (五)脂类对蛋白质的共价修饰 (1)在翻译中,连接肉豆寇酸于N端甘氨酸; (2)在翻译后,脂肪酸与半胱氨酸、丝氨酸或苏氨酸侧链酯化,以脂酰CoA为供体; (3)在翻译后,通过乙醇胺将糖基磷脂酰肌醇(GPI)连接于多肽前体的接近C端的氨基酸残基上,生成与膜结合的GPI锚定蛋白(GPIanchored protein)。,表. 蛋白质生物合成中氨基酸残基的修饰,氨基酸 修饰方式 精氨酸 ADP核糖基化;氨基未端甲基化 天冬酰胺 ADP核糖基化;糖基化;氨基未端甲基化;羟化作用 天冬氨酸 在GPI锚锭蛋白中以酰胺连接于乙醇胺;羟化作用 半胱氨酸 二硫键形成;脂肪酰化作用 谷氨酸 羟基化作用;甲基化作用 谷氨酰胺 赖氨酸氨基交联;氨基末端甲基化;内部环化成氨基末端焦谷氨酸 甘氨酸 转变成羟基未端酰胺;氨基未端的肉豆寇酰化 组氨酸 形成白喉酰胺(dipbthamide),ADP核糖基化;氨基末端甲基化 赖氨酸 羟化作用后5羟赖氨酸糖基化;交联形成;乙酰化作用 甲硫氨酸 氨基未端甲酰基团脱甲酰化作用;氨基未端甲基化 苯丙氨酸 氨基未端甲基化 脯氨酸 羟化作用形成3或4羟脯氨酸;氨基未端甲基化 丝氨酸 磷酸化;糖基化;脂肪酰化;在tRNA水平上硒代半胱氨酸的形成 苏氨酸 磷酸化作用;糖基化作用;脂肪酰化作用 酪氨酸 磷酸化作用;哺乳动物-微管蛋白中羟基未端残基的交换,(六) ADP核糖基化 (七)乙酰化 乙酰化普遍存在于原核和真核生物中。有二种:(1)由结合于核糖体的乙酰基转移酶催化,将乙酰CoA的乙酰基转移至正在合成的多肽链上;(2)翻译后由细胞质的酶催化发生乙酰化。 (八)磷酸化 酶、受体、介体及调节因子等蛋白质的普遍修饰方式。在细胞生长和代谢调节中有重要功能。发生在翻译后,由各种蛋白激酶催化进行。 (九)C 端酰胺基的引入 (十)酪氨基的硫酸化 真核生物蛋白质的酪氨酸硫酸化。, Protein translocation describes the movement of a protein across a membrane. This occurs across the membranes of organelles in eukaryotes, or across the plasma membrane in bacteria. Each membrane across which proteins are translocated has a channel specialized for the purpose. Two types of Ribosome in cells:Free ribosome and membranous ribosome The leader of a protein is a short N-terminal sequence responsible for initiating passage into or through a membrane. Signal sequences are most often leaders that are located at the N-terminus. N-terminal signal sequences are usually cleaved off the protein during the insertion process.,3-1-4 蛋白质的跨膜运输与定位,Figure 8.1 Proteins that are localized post-translationally are released into the cytosol after synthesis on free ribosomes. Proteins that are localized cotranslationally associate with the ER membrane during synthesis.,一、蛋白质转位的途径 1. 共翻译转位(co-translational translocation) Proteins that are localized cotranslationally associate with the ER membrane during synthesis, so their ribosomes are “membrane-bound“. The proteins pass into the endoplasmic reticulum, along to the Golgi, and then through the plasma membrane, unless they have signals that cause retention at one of the steps on the pathway. They may also be directed to other organelles, such as endosomes or lysosomes. 2. 翻译后转位(post-translational translocation ) Proteins that are localized post-translationally are released into the cytosol after synthesis on free ribosomes. Some have signals for targeting to organelles such as the nucleus or mitochondria.,Figure 8.3 Membrane-bound ribosomes have proteins with N-terminal sequences that enter the ER during synthesis. The proteins may flow through to the plasma membrane or may be diverted to other destinations by specific signals.,(一)Co-translational translocation,1. 进入内质网,The signal recognition particle (SRP) is a ribonucleo-protein complex that recognizes and binds to signal sequences during translation and guides the ribosome to the translocation channel. SRPs from different organisms may have different compositions, but all contain related proteins and RNAs. Function: It can bind to the signal sequence of a nascent secretory protein. And it can bind to a protein (the S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论