大规模光电子集成及其应用课件_第1页
大规模光电子集成及其应用课件_第2页
大规模光电子集成及其应用课件_第3页
大规模光电子集成及其应用课件_第4页
大规模光电子集成及其应用课件_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、大规模光电子集成及其应用提纲一、SPM实验室和硅基光电子学二、关键科学问题和主要研究内容三、可能取得的重大进展和重要应用前景SPM team at PKU, May, 2018Research Funding: MOST programs (973, 863, SKL), NSFC programs (International, Major, General),Provincial programs, and Industrial programs (Huawei, ZTE, Delta) .Collaborators: MIT, Stanford, CalTech, GaTech, Uni

2、versity of Southampton, University of Tokyo, 硅基光电子学是探讨微米/纳米级光子、电子、及光电子器件的新颖工作原理,并使用与硅基集成电路技术兼容的技术和方法,将它们集成在同一硅衬底上的一门科学。硅基光电芯片Light SourceLight GuidingIntegrationLight ModulationLight Detection光电子器件的硅基化及大规模集成/go/sp硅基光电子芯片:换道超车的核心技术什么是核心芯片-1核心芯片是将高性能、低能耗的功能器件和系统通过大规模半导体集成的方式制作在单一衬底上而形成的系统级芯片。其特点是高性能、低

3、能耗、大规模集成。因此,低性能和小规模集成的芯片都算不上核心芯片。我国目前能够制作的大部分都是这些非核心芯片。什么是核心芯片-2核心芯片又分为微电子和光电子两种芯片。微电子核心芯片包括中央处理器,图形处理器,数字信号处理器,现场可编程门阵列,数模/模数转换器,放大器,驱动器等,其共同特征是只依靠电子进行工作。光电子核心芯片则包括光电子收发器,开关路由器,光学相控阵,激光器阵列,探测器阵列,复用/解复用器,以及与这些集成的相关微电子芯片等,其共同特征是依靠电子和光子同时进行工作。什么是核心芯片-3经过50多年的研究与开发,微电子芯片的发展基本上接近尾声。而光电子芯片,特别是硅基光电子芯片,则是以

4、 “后摩尔时代的重要技术“、“颠覆性技术”的姿态, 在近10年得到发达国家和地区的高度重视。Interconnection for Data Transmissions提纲一、SPM实验室和硅基光电子学二、关键科学问题和主要研究内容三、可能取得的重大进展和重要应用前景关键科学问题1.提高发光效率2.增强电光效应3.扩展应用波长4.降低系统能耗5.片上异质集成主要研究内容 微纳米范围之内的光电相互作用及影响 微纳范围内光-光,光-热、光-机,光-磁,光-生化等的传感行为 微纳光电器件的计算机模拟 微纳光电器件的耦合 微纳传感器件的集成 微弱信号的探测与放大 微纳薄膜技术光 电Photonics

5、Electronics CMOS工艺(纳米光刻, 聚焦离子束加工,高精度等离子体工艺.)Silicon based on-chip lasersDesirable on-chip lasers for optoelectronic integrationEmitting 1310 or 1550 nm Electrically pumped laser CMOS process compatibleCandidates Er-related light sourceGe-on-Si laserIII-V-based Si laserWorkingmechanismUsing Er as an

6、atomicemitting centerEnhance emitting efficiencyvia bandgap engineeringUsing III-V materialas gain mediumSiOx:Er;SiNx:Er;Er silicatesInAlGaAs QW;InGaAsP QW ;InAs/GaAs QDGainmaterialGe;GeSn alloyLarge gain spectrum;Material and processcompatibility with Sitechnology;CMOS compatiblefabrication process

7、;Wavelength stabilityHigh gain and outputoptical power; Goodstructure design flexibilityAdvantageChallengeLow EL efficiency;Obtain net gainGe materials quality;Ultrahigh threshold currentFabrication compatibility;cost reductionZ. Zhou et al, “On-chip light sources for silicon photonics”, Light: Scie

8、nce & Applications (2015) 4, e358.Energy ConsumptionZ. Zhou, et al, Lowering the energy consumption in silicon photonicdevices and systems, Photonics Research 3, B28-B46 (2015).Reviews current optical linkperformance in terms of energy andinsertion lossProposes methods for device-leveloptical link e

9、nergy reduction andinsights into on-chip lasersLow energy consumption silicon optical modulatorA complete analytical theory, energy consumption analysis, and eye diagrams onabsolute scales for lumped modulators. The results show that silicon modulationenergy as low as 80.8 and 21.5 fJbit can be achi

10、eved at 28 Gbd under 50 and 10 impedance drivers, respectively. A 50 Gbd modulation is also shown to be possible.X. Li, et al, Photon. Res. Vol. 5, Issue 2, pp. 134-142 (2017).Athermal filterAthermal filter: The athermal performance has beenmeasured to be -5 pm/K while the minimum insertion loss iso

11、nly 0.4 dB with a device dimension of 170 mm 580 m m.Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, and Z. Zhou, Opt. Express 24, 29577-29582 (2016)On-chip plasmonic waveguide optical waveplateDesign and fabrication(a) 3D view of the polarization rotating device integrated in-line with a standardSi wi

12、re waveguide of 400 nm width and 250 nm height. (b) Polarization rotationsegment integrated at the output end of a laser to generate circular polarization.(d) Scanning electron micrograph (SEM) showing the device in-line integratedwith a Si wire waveguide.L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J

13、. Harris, and Z. Zhou, Sci. Rep. 5,15794, (2015).Polarization-independent directional coupler (PIDC)The beat lengths for TE and TM mode are tailored to be equal bythe refractive index engineering of the subwavelength grating (SWG),leading to a polarization-independent directional coupler (PIDC).Comp

14、ared to other schemes, this SWG based one is compact, CMOScompatible, and is the first experiment result of PIDC.SWG DCL Horizontal slot DCnodd2 nevenfootprintHybrid plasmonic DCcompatibilityEquivalent homogeneous mediumEffective refractive index engineeringL. Liu, Q. Deng and Z. Zhou, Opt. Lett. 41

15、, 1648 (2016).Low insertion loss (TE:0.11dB, TM:0.15dB)Less polarization sensitivity (CE difference 0.04 dB)Broad bandwidth( 0.5dB bandwidth45 nm)Short length (8.4 m), minimum feature size 100 nm,easy to fabricateThe first experimental result of a ON-CHIP polarization independent DCPolarization beam

16、 splitter (PBS)The beat length for TE mode shrinks 20-fold by the refractiveindex engineering of the subwavelength grating (SWG), half that ofTM mode, leading to a high extinction ratio (ER). Meanwhile, Thedispersion engineering of SWG releases the wavelength dependencegreatly. Finally, high ER (20

17、dB) and broad bandwidth (100 nm) arerealized simultaneously, which is difficult for conventional PBSs.L. Liu, Q. Deng and Z. Zhou, Opt. Lett. 41, 5126 (2016).Arbitrary splitting ratio MMI power splitter Characteristics: Arbitrary splitting ratio:100:0 50:50; Small footprint:1.5 m1.82.8 m; Broadband:

18、Splitting ratio variation 2%(1520-1580 nm) Low excess loss (0.5dB):Comparable to conventionalMMI.Q. Deng, L. Liu, X. Li, and Z. Zhou, Opt. Lett. 39, 5590 (2014)Strip-slot waveguide converterPerformance: Strip-slot waveguide coupling though this modeconverter has a measured efficiency of 97% (0.13 dB

19、) for awavelength range of 130 nm (14501580 nm). , and thedimensions are as small as 1.24 m 6 m.Q. Deng, L. Liu, X. Li, and Z. Zhou, Opt. Lett. 39, 5665 (2014).提纲一、SPM实验室和硅基光电子学二、关键科学问题和主要研究内容三、可能取得的重大进展和重要应用前景OFC 2018: Silicon PhotonicsOFC Milestone: In its 40th Anniversary in 2015,developments in

20、Internet of Things (IoT), siliconphotonics and SDN drive discussions inconference and on exhibit floorMore Silicon Photonics ProductsThe Silicon Photonics Integration is getting better:smaller package and higher data rateA 128 Gb/s PAM4 Silicon Microring Modulator(Intel PDP paper)国际最新进展1、IEDM 2018OD

21、I subcommittee, Tutorial, session, and specialsession2、OFC 2019Workshop on Integrated chip for data cebterapplications.Many silicon Photonics and Silicon PhotonicsModulators related sessions in the program abstracts发展趋势1.更多基础研究:片上/片下光源,线性/非线性器件,节能机理,器件小型化2.更高传输速率:单通道100G,coherent or WDM PAM-4 200G,4

22、00G,3.更大规模片上集成:零改变CMOS工艺,45纳米工艺,异质集成4.更多厂商加入:完善的产业链,覆盖短途和长距硅基光电子的早期应用领域高速计算机网络硅基光电子技术能够有效解决大数据时代面临的问题: 高速通讯 海量数据高速通信网络高速物联网基于硅基光电子技术的数据中心Optical Phase Arrays2D imaging OPAsRecord Array Scale : 64x64ord active pixel:9 m x 9 mFully integrated hybrid 2D OPA chipSun J, Timurdogan E, Yaacobi A, et al. Na

23、ture, 20132D beam steering OPAs (grating waveguides array)Integrating hybridtunable laser, SOA,MMI, EO phaseshifters, gratingarray, photodiodeson a single chipChannel Num : 128Sweeping angle : 51Resolvable points : 60,000Beam width Divergence : 0.14Hulme, J. C., et al. Optics express 2015.Hutchison,

24、 David N., et al. Optica, 2016.Quantum Photonics: Bulk integratedSilicon photonics has the potential to achieveon-chip quantum photonic system with allcomponents egrated silicon quantum photonics:i. pump input and splitter, ix. MMI coupler,iiiii. photon-pair source, x. waveguide crossi

25、ng,v. pump removal filter, xi. single-photon detector,arXiv:1006.4743v1vii. WDM,xii. Grating coupler,ii. thermal phase tuner,xiii. control and logic IC.IEEE J. Quantum Elect. 22, 6700113 (2016).Metamaterial-inspired Silicon PhotonicsMetamaterials are engineered structures designed to interact with E

26、M field ina desired fashion. Silicon metamaterials emerged popular for high refractiveindex, low loss and the optical properties can be tailored very effectively andflexibly by this micro-control.1. Silicon Metasurfaces: 2D nanostructures; light is at normal or near-normalincidence to the nanostruct

27、uredsurface)2. Bulk Silicon Metamaterials: 1/2/3D nanostructures; light is along the directions inwhich the building blocks arearranged)I. Staude and J. Schilling, Nat. Photonics 11, 5 (2017).(g,h)Silicon Metasurfaces (i-l) Bulk Silicon MetamaterialsSilicon Photonics for MID-IRThermal-optical modula

28、tors inThermal-optical modulators inGe-on-Si at 5 mSOI at 3.8 mMalik A, Dwivedi S, Van Landschoot L, et al. Opticsexpress, 22, 23, 28479-28488(2014).Nedeljkovic M, Stankovic S, Mitchell C J, et al. IEEEPhoton. Technol. Lett., 2014, 26(13): 1352-1355.Electro-optical modulators inElectro-optical modul

29、ators inGeOI at 2 mGe-on-Si at 3.8 mKang J, Takenaka M, Takagi S. Optics Express, 2016,24(11): 11855-11864Tiantian L, Nedeljkovic M, Nannicha H, et al.International Coference on Group IV Photonics 2017Microring SensorResonance enhanced sensingAnalyte2Rneff=mIs ,ORs,SENSITIVITY:nnccBasic microring se

30、nsor optimizationMaximal Sensivitity:transmission coefficient approaches unityself coupling coefficientt equals 2Z. Xia, Y. Chen, and Z. Zhou, IEEE J. Quant. Electron., 44(1), 100-107, 2008.Multi-resonance microring sensorVernier Effect in the resonance shiftLarge overlap-resonance shiftLarge dynami

31、c rangeHigh Sensitivity ( shift 0.31nm for 10-6RIU)H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, Appl. Phys. Lett., 95, 191112, 2009.Fano resonance single microring sensorFano resonanceDual-resonance couplingAsymmetric resonanceSOI microring-sharpslopeHigh Sensitivity (10-8RIU atQ=104)H. Yi, D. S. Citr

32、in, and Z. Zhou, Opt. Expr., 18(3), 2967-2972, 2010.Coupling-induced microring sensorAnalyte affect the coupling element !vvRMRRMRTypeTypeMicroring enhancedcoupling elementCoupling coefficient change Output intensity changeNo ultra-narrow lightsource neededHigh sensitivity 10-8RIUH. Yi, D. S. Citrin, and Z. Zhou, J. Society Americ. B., 28(7), 1611-1615, 2011.Athermal Optical SensorSpectrum shift(Temperature i

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论