




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11、填空题(每小题 3 分,共 15 分)1 设事件 仅发生一个的概率为 0.3,且 ,则 至少有一个不发BA, 5.0)(BPAA,生的概率为_.答案:0.3解: 3.0)(即)(25.0)()(3.0 ABPBPABPA 所以 1.0)(.9)(2 设随机变量 服从泊松分布,且 ,则 _.X)2(4)1(XP)3(答案: 6e解答: eXPeXPXP 2)(,)1()0()1(由 知 e224即 2 解得 ,故16)3(e3 设随机变量 在区间 上服从均匀分布,则随机变量 在区间 内的概X)2,0( 2XY)4,0(率密度为 _.)yfY答案: 1,0,14()()()2.YXyfFyfy 其 它解答:设 的分布函数为 的分布函数为 ,密度为 则,Y()XFx()Xfx2()()(YyPyPyFy因为 ,所以 ,即0,2XU0XY故21,04,14()()()2.YXyfyFfy其 它另解 在 上函数 严格单调,反函数为0,2x()h所以 1,04,4()2.YX yfyfy其 它4 设随机变量 相互独立,且均服从参数为 的指数分布, ,则, 2)1(eXP_, =_.1),min(YXP答案: ,2-4e解答:,故 2()()Pein,1min(,)1YXYP.45 设总体 的概率密度为X.其 它,0,1,)1()xxf是来自 的样本,则未知参数 的极大似然估计量为_.n,21答案: 1lniix解答:似然函数为 1 11(,;)()(),)nnni niLxxx 1llliiLn0iidx解似然方程得 的极大似然估计为3.1lniix2、单项选择题(每小题 3 分,共 15 分)1设 为三个事件,且 相互独立,则以下结论中不正确的是,ABC,AB(A)若 ,则 与 也独立.()1PC(B)若 ,则 与 也独立.(C)若 ,则 与 也独立.0(D)若 ,则 与 也独立. ( )答案:(D).解答:因为概率为 1 的事件和概率为 0 的事件与任何事件独立,所以(A) , (B) ,(C)都是正确的,只能选(D).事实上由图 可见 A 与 C 不独立.2设随机变量 的分布函数为 ,则 的值为(0,1)XN()x(|2)PX(A) . (B ) .1221(C) . (D ) . ( ))答案:(A)解答: 所以(0,1)XN(|2)1(|2)1(2)PXPX应选(A).123设随机变量 和 不相关,则下列结论中正确的是Y(A) 与 独立. (B) .X()DXY(C) . (D) . ( )()DS A B C4答案:(B)解答:由不相关的等价条件知, 0yxcov0xy),(()+2covDXY( , )应选(B).4设离散型随机变量 和 的联合概率分布为(,)1,(2)1,3(,)2,(,3)698XYP若 独立,则 的值为,(A) . (A ) . 21912,9(C) (D) . ( ),6585答案:(A)解答: 若 独立则有,XY(2,)(2)PXYPXY11393, 2故应选(A ).5设总体 的数学期望为 为来自 的样本,则下列结论中X12,nX X正确的是(A) 是 的无偏估计量 . (B ) 是 的极大似然估计量.1 1(C) 是 的相合(一致)估计量. (D ) 不是 的估计量. ( )答案:(A)解答:,所以 是 的无偏估计,应选(A ) .1EX13、 (7 分)已知一批产品中 90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为 0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设 任取一产品,经检验认为是合格品A任取一产品确是合格品B则(1) ()(|)(|)PABP0.95.102.857(2) .()9(|)4、 (12 分)从学校乘汽车到火车站的途中有 3 个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 2/5. 设 为途中遇到红灯的次数,X求 的分布列、分布函数、数学期望和方差.1231698331298YX6解: 的概率分布为X332()()0,123.5kkPXC即 0174682251的分布函数为X0,71258(),2,7,3,125.xFxxx63,EX.2185D5、 (10 分)设二维随机变量 在区域 上服从均(,)Y(,)|0,1xyxy匀分布. 求(1 ) 关于 的边缘概率密度;(2) 的分布函数与概率XZXY密度.解: (1) 的概率密度为(,)Y2,(),0.xyDfxy其 它,01()(,)X xffd其 它(2)利用公式 ()(,)Zfzfxz其中 2,01(, xfx其 它 2,01,.xz其 它当 或 时0z1()Zfz时 0022zdxxz z=x1D0 1z xyx+y=1x+y=zD17故 的概率密度为Z2,01,()zf其 它 .的分布函数为Z20, ,0,()()2,11,.1,zzZZ zffydyz或利用分布函数法10,()()21,.Z DzFzPzXYzdxyz20,1,.zz2,01,()Z zfF其 它 .6、 (10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标 和纵坐标 相XY互独立,且均服从 分布 . 求(1)命中环形区域2(0,)N的概率;(2)命中点到目标中心距离 的(,)|1Dxy 2Z数学期望.解: (1) ,)(,)DPXYfxyd2 228 8014xy rDede;2288211()rr(2)2228() xyEZXYxedxy0 1 282 22880 01184r reded. 22 28 80rr r七、 (11 分)设某机器生产的零件长度(单位:cm) ,今抽取容量为 16 的2(,)XN样本,测得样本均值 ,样本方差 . (1)求 的置信度为 0.95 的置信10x206s区间;(2)检验假设 (显著性水平为 0.05).2:.H(附注) 0.50.50.25(6).74,()73,()3,ttt22. . .94927.48解:(1) 的置信度为 下的置信区间为1/2/2(),(1)ssXtnXtn0.510,.4,16,.32s所以 的置信度为 0.95 的置信区间为(9.7868,10.2132)(2) 的拒绝域为 .20:.1H2(1)n,5.64.S0.54.96因为 ,所以接受 .22.49()0H概率论与数理统计期末考试试题(A)专业、班级: 姓名: 学号: 一、单项选择题(每题 3 分 共 18 分)1D 2A 3B 4A 5A 6B题 号 一 二 三 四 五 六 七 八 九 十 十一 十二 总成绩得 分9一、单项选择题(每题 3 分 共 18 分)(1) .0)(,0)( ;0)(0)( ) ( ).,0(ABPAP(D)BC()AABPB则同 时 出 现 是 不 可 能 事 件与 或 互 不 相 容互 斥与 则 以 下 说 法 正 确 的 是适 合、若 事 件(2)设随机变量 X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4 则 ( ) 。5.1P(A)0.6 (B) 1 (C) 0 (D) 21(3)设事件 与 同时发生必导致事件 发生,则下列结论正确的是( )1A2 A(A) (B))()1P 1)()(21AP(C) (D)2(4) ).54,0);46,0();3,0();5,0(72),12(),1(DNCBNAZYXZYX则令 相 互 独与且设 随 机 变 量 立 .10(5)设 为正态总体 的一个简单随机样本,其中nX,2,1 ),(2N,2未知,则( )是一个统计量。(A) (B) 21nii 21)(niiX(C) (D) X(6)设样本 来自总体 未知。统计假设n,21 2),(NX为 则所用统计量为( )。:已 知 )(: 0100 HH(A) (B) nXUnSXT0(C) (D)22)1(S ii122)(二、填空题(每空 3 分 共 15 分)(1)如果 ,则 .)(,0(,)( APBPA)(B(2)设随机变量 的分布函数为X.0 ,)1(, ,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国可折叠刀行业市场全景分析及前景机遇研判报告
- 国际邮轮乘务管理专业教学标准(高等职业教育专科)2025修订
- 2025年中国高端红酒市场发展现状调查及投资趋势前景分析报告
- 2024年中国钻井液助剂行业市场调查报告
- 中国音乐贴花行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 信贷技能培训课件
- 2025年 重庆公务员考试行测试题市直附答案
- 2025年中国大型客车行业市场调研分析及投资前景预测报告
- 2025年 南通市第三人民医院招聘考试笔试试题附答案
- 2025年 河南省全科医生特设岗位计划招聘笔试试题附答案
- 大学生恋爱与性健康(中国性学会) 超星尔雅学习通章节测试答案
- 中医医院中医护理工作指南2024
- 绿植租赁维护摆放服务实施方案
- 光伏运维技能大赛备考试题含答案
- 高考英语读后续写练习03:女儿离家又回家+讲义
- 2024铁塔采购合同模板
- 卤菜店供货合同协议书
- 华为云:2024年EMS弹性内存存储技术白皮书
- 卡粘式连接薄壁不锈钢管道工程技术规程
- 2024年山东普通高中学业水平等级考试化学(原卷版)
- 接警员试题题库
评论
0/150
提交评论