




已阅读5页,还剩152页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小学数学疑难问题研究第一章 有关“数与代数”的疑难问题第一节 数的认识与大小比较A11 自然数在 现代数学中的定 义与在小学数学 课本中的说明有什么不同?【自然数】 “数” (sh)起源于数(sh) ,一个、一个地数东西。由此而产生的用来表示物体个数的数一,二,三,就叫自然数。零表示没有东西可数,零也是一个自然数。 “一”是自然数的单位。任何一个自然数都是由若干个“1”组成的。【自然数的产生】 自然数概念的产生,经过了漫长的岁月。首先,产生的是“有” 、 “无”的概念。原始人在打猎、捕鱼或采集果实时,对于猎物或果实的有、无是最为关心的。然后, “有”的概念进一步分化为“多”和“少” 。为了比较多少而使用一一对应的方法时,必然会遇到“同样多”的物体集合(即等价集合) 。等价集合被归入一类,并且从中选出一个大家熟悉的集合来表示这类集合的共同性质。其实质就是用具体的集合形象地表示数目的多少。例如,用一个人的耳朵的集合作为一类等价集合的代表。逐渐地,这类等价集合被称为“耳” 。最后,脱离具体的事物集合,用专门术语表示一类等价集合的共同性质。于是, “耳”就演化为“二” 。自然数“二”的概念就这样产生了。 (图 11)图 11有、无 多、少用具体集合来表示一类等价集合的共同性质(如“耳” )脱离具体集合,出现专门名词(如“二” )表示自然数的名词,许多都是从常见的实物演变而来的。如藏文“二”有“翼”的意思,梵文的“五”与波斯语的“手”相近。南美洲有些地方干脆把“五”叫做“手” , “六”叫做“手一” , “七”叫做“手二”等等。这些事实都说明自然数的概念来源于实践。【弗莱格罗素的自然数定义】 1884 年,德国数学家、逻辑学家弗莱格(F.L.G.Frege 18481925)在他的著作算术基础中,最先给出了自然数的定义。但这个成果当时少为人知。直至 1902 年,英国数学家、逻辑学家和哲学家罗素(B.A.W.Russell 18721970)重新给出这个定义。在他们作出的被后人称之为“弗莱格罗素的自然数定义”中,将每一个自然数定义为“可以建立一一对应的所有的有限集组成的集。 ” 能和有限集 A 建立一一对应的(即和 A 等价的)所有集组成的集称为“集 A 的基数” 。记为 。即A=BBA其中,表示集的等价关系。为了使自然数的这个定义通俗易懂,有些用于教师教育的小学数学基础理论教科书将每一个自然数定义为“可以建立一一对应的一类有限集的共同性质” 。以往的人教版小学数学教科书在教学“5 的认识”时,首先引导小学生观察画面上的五位解放军、五匹马、五支枪,以及五根小棒、五粒算珠、五颗五角星等不同的物体集合。然后,引导小学生寻求这些物体集合的共同点:“它们都是五个” 。 “五”就是这些物体集合的共同性质。从而初步形成自然数“五”的概念。可见,小学生对自然数的基数意义的 认识,和弗莱格-罗素的自然数定义实质上是一致的。【皮亚诺公理】 为了建立自然数的公理化体系,意大利数学家和逻辑学家 G.皮亚诺(G .Peano 18581932)在 1891 年给出了关于自然数的五条公理:0 是一个自然数。0 不是任何其它自然数的继数。每一个自然数 a 都有一个继数。如果自然数 a 与 b 的继数相等,则 a、b 也相等。(数学归纳法公理)如果一个由自然数组成的集合 S 包含 0,并且当 S 包含某一个自然数 a 时,它一定也含有 a 的继数,那么 S 就包含全体自然数。皮亚诺的这一公理系统被称之为“皮亚诺公理” ,它标志着数学分析算术化运动的终结。参考书1中国大百科全书 数学中国大百科全书出版社 1988 年 11 月第 1 版,P220;321322;461;510。2中学数学教师手册上海教育出版社 1986 年 5 月第 1 版,P1331。3逻辑与小学数学教学金成梁著,北京师范大学出版社 2001 年 9 月第 1 版,P1920。A12 自然数的 “基数意 义”和“序数意义”有什么不同?【基数】 当自然数 0,1,2,用来表示有限集合中元素的个数时,这样的数叫做“基数” 。如“这幢住宅楼是 5 层楼”这里的“5”就是基数。【序数】 当自然数被用来表示事物的排列次序时,这样的数就叫做“序数” 。如“我住在这幢住宅楼的 5 楼” ,这里的“5”就是序数,表示“第 5”的意思。上体育课时排成一列横队“报数” ,排头从“1”开始,报到排尾是“35” ,那么这个“35”既表示这一队学生共有 35 人,也表示排尾的学生是第 35 个。在一个句子里出现的自然数究竟是基数、还是序数,要根据语言环境(即上下文)来判定。A13 自然数、正整数和整数之间的区别和联系是什么?【正整数】 一个、一个地数东西而产生的、用来表示物体个数的数 1,2,3,也叫正整数。当我们数每一棵苹果树上有多少个苹果时,可能遇到一个苹果也没有的情形。要数的东西一个也没有,就用“0”表示。0 与正整数统称自然数。【负整数】 为了表示现实世界中具有相反意义的量,人们引用了正数与负数。如“盈利 5 元”用“+5 元”表示, “亏损 5 元”就用“5 元”表示。这种在一个数前添加的表示它的“正” 、 “负”的符号叫做“性质符号” 。添加了性质符号“+”或“”的数分别称为“正数”与“负数” 。 “0”既不是正数,也不是负数。正数中的正号可以省略不写。添加了负号“”的正整数叫做负整数。【整数】 正整数、零与负整数统称“整数” 。 (如图 1-2)负整数 正整数 正整数,3,2,1,0,+1,+2,+3, 整数 零自然数 负整数整数图 12【皮亚诺的整数系】 皮亚诺在构造了自然数系的公理后,又构造了整数系。首先,用自然数偶(m , n)表示整数:用(m+n,m)表示正整数 n;用(m,m )表示数 0;用(m,m+n)表示负整数n。第二步,定义数偶的加法、乘法与大小关系:(m,n)+(k,l)= (m+k,n+l);(m,n) (k,l)=(mk+nl,ml+nk);(m,n)(k,l) 当且仅当 m+ln+k.可以证明:经过这样定义的整数集满足加法与乘法的结合律、交换律和乘法对加法的分配律。它包含有数0,对任何整数 n,有0+n=n还包含了单位元素 1,对任何整数 n,有1n=n自然数对于任何整数 m、 n,方程 m+x=n 总有唯一解。并且整数集关于“”构成一个有序集。参考书中学数学教师手册上海教育出版社 1986 年 5 月第 1 版,P1309。A14 为什么以前 规定 “零不是自然数”, 现在又规定“零是自然数”?1891 年,意大利数学家 G皮亚诺在建立自然数的公理化体系时,给出的第一个公理就是“0 是一个自然数” 。可见,在欧美各国的学术界,这样的观点处于主导地位。1949 年中华人民共和国成立后,欧美的一些主要国家联合起来,对我国实行经济封锁。导致我国与原苏联订立“中苏友好互助同盟条约” ,并且提出“向苏联学习”的口号。许多学科的教学大纲和教科书都是参照苏联的版本编译的。MK 格列本卡著高等学校教学用书。 算术P6 中明确指出:数(sh)树上的苹果时,可能某一棵树上一只苹果也没有。这时我们就说这棵树上的苹果数目为零。零就是没有东西可数。零作为一个数,不属于自然数。于是, “零不是自然数”的判断在中小学数学课程中广为传播。20 世纪 80 年代以来,为了实行对外开放,便于国际交流,在科技与教育上和国际接轨,在 1993 年颁布的中华人民共和国国家标准 (GB3100-3102-93 ) 量和单位 (11-29 )第 311 页,规定:自然数包括零。随后,在进行中小学数学教材的修订时,根据上述国家标准进行了修改。数物体时如果一个物体也没有,就用 0 表示。0 也是自然数。1994 年 11 月国家技术监督局发布的中华人民共和国国家标准,物理科学和技术中使用的数学符号中,将自然数集记为 N=0,1,2,3, 。而将原自然数集称为非零自然数集N+(或 N*)=1,2,3,自然数集扩充后,自然数的基数理论以及其他一些与自然数有关的理论问题随之发生变化,如自然数加法与乘法的定义中要去掉原有的“非空”二字,对于与自然数有关的命题的论证,应随自然数扩充后作相应调整。如数学归纳法证明的步骤应是:1验证 n=0 时,命题成立;2假设 n=k1 时命题成立,证明 n=k 时命题仍然成立。从而与 G皮亚诺 1891 年给出的关于自然数的公理一致。科学概念的定义,它的内涵与外延的明确界定,本来就是一种人为的规定。它可以随着科学、技术的发展而由权威科学家的群体重新定义。不久前,天文学家对“行星”的重新定义使得冥王星不再是我们这个太阳系的九大行星之一。【自然数的分类】 规定“0 是自然数”后,自然数按约数个数的分类也将发生变化(如图 13):质数(有且只有 2 个约数)合数(有 3 个或 3 个以上的约数)1(只有 1 个约数)0(0 以外的任何数都是它的约数)参考书高等学校教学用书算术,MK格列来卡著,商务印书馆,1957 年 4 月 5 日版A15 “自然数集”、 “自然数列”和“扩大的自然数列”有哪些区别和联系?自然数列有哪些基本性质?【自然数集】 所有的自然数组成的集合叫做“自然数集” 。【集合概念】与【非集合概念】 “自然数”和“自然数集”是两个不同的概念。我们可以说“3 是自然数” ,但不能说“3 是自然数集” 。因为“自然数集”是一个集合概念,即从整体上反映一个集合体的概念。 “自然数”则是非集合概念。作为练习,试区分下面的概念中,哪些是集合概念,哪些是非集合概念:(1)到 A、B 两点距离相等的点;(2)到 A、B 两点距离相等的点的轨迹;自然数约数 合数0,1自然数图 1-3(3)中国数学家;(4)中国数学协会。【自然数列】 将所有的自然数按照从小到大的顺序排成一列,0,1,2,3,这样的一列数叫做自然数列。 “自然数列”和“自然数集”都必须包括所有的自然数,但它们的区别就在于自然数集不讲究所含元素的顺序,而自然数列中所有的自然数都必须按照从小到大的顺序排列。只要有一处违反了这样的顺序,如 0,2,1,3,它就不是自然数列。当然,少了一个自然数的数集或数列也不再是自然数集或自然数列。【自然数列的性质】 自然数列有以下性质:(1)有始。自然数列是从 0 开始的。0 不是任何其它自然数的继数;(2)有序。每一个自然数都有且只有一个继数;除了 0,每个自然数都有且只有一个先行的数;(3)无限。自然数列是一个无限数列。没有最后的(或者说最大的)自然数。【扩大的自然数列】 这是一个应该消亡的数学名词。当我们认为“0 不是自然数”时,把1,2,3,叫做“自然数列” 。而将0,1,2,3,称为“扩大的自然数列” 。现在,国家标准重新规定“0 是自然数” ,因此,后者顺理成章地应该称之为“自然数列” 。 “扩大的自然数列”作为一个数学名词已经不再需要。A16 “计数”、 “记数”、 “数数”、 “写数”、 “读数”各指什么?什么是计数的基本原理?为什么我们的计数制和记数制都是十进制?【计数(count) 】 【数数】 “计数”就是“数数” 。指的是把一些事物与非负自然数列里的数1,2,3,建立一一对应的过程。【计数原理(counting principle) 】 计数的基本原理如下:只要不遗漏、不重复,计数的结果与计数的顺序无关。【十进制计数法】 计数时,可以一个,一个地数,也可以几个、几个地数。如二个、二个地数;五个、五个地数;十个、十个地数等。二、五、十等都是计数单位。用一(个) 、十、百、千、万、等作为计数单位的计数方法叫做十进制计数法。这时,每十个较低的计数单位等于一个较高的单位。实际运用十进制计数法时,要从尽可能大的计数单位数起。如数一盘草莓,先十个、十个地数,剩下不足十个时,再一个、一个地数。最后弄清这盘草莓的个数是几个十、几个一。 (这里的“几”应该是不大于 9 的自然数。 )运用十进制计数法,我们就可以弄清一个自然数 N 是由几个一、几个十、几个百、几个千、组成的。这里的“几”都是不大于 9 的自然数。用符号表示就是,nnnnn aaaN1010102其中,0 9,0 , 9。a1n【记数】 【写数】 “记数” 就是“写数” 。指的是如何用数字符号将一个数 N(或者计数的结果)记录下来。【十进制记数法】 当我们用十进制计数法弄清了一个数的组成后,就可以按照十进位记数制用数字符号 0,1,2,9 把这个数记录下来。由于自然数有无限多个,要对每一个自然数都给一个独立的名称和记号是不可能的。现在国际上通用的记数方法是用0,1,2,9分别表示自然数列里的前十个数。其它自然数则用这些数字按“位值原则”表示出来。即每个数字占有一个位置,叫做“数位” 。每个数位表示一种计数单位。同一个(0 以外的)数字在所记的数里位置不同,所表示的数值也不同。在所记的数里,从右向左,第一位是个位,第二位是十位,第三位是百位,。个位的计数单位是一,十位的计数单位是十,百位的计数单位是百,。如果一个数是由八个百、三个十和五个一组成的。就把它写作 835。一般地,如果一个自然数,nnnnn aaaN1010102其中,0 9,0 , 9。则此自然数就写作 。因为每两个相邻数位的计a1n 21数单位的进率都是十,所以这种记数的方法叫做十进制记数法。A17 “数 ”和“数字”的区 别和联系是什么?【数字(numerals) 】用来记数的符号叫做“数字” 。数和数字是两个不同的概念。数或为单数、或为双数,或为质数、或为合数。数字或为罗马数字、或为阿拉伯数字,或为手写的数字、或为印刷的数字。事实上,数字并不是数,而是表示数的记号。数是数字所表达的内容而不是数字本身。中国是世界上的文明古国之一。用文字记数在我国已有悠久的历史。早在三千多年前的商代的甲骨文里,就已经记有数字。其中记载的最大的数是“三万” ,最小的数是“一” 。一、十、百、千、万各有专名。特别是当时已经采用了十进制的记数方法,这和现在世界通用的“十进制记数法”是一致的。A18 说“ 43”是数而不是数字 对吗?表示数的符号叫做数字。因为“43”是一个数学符号,在十进制记数法中,用来表示由四个十与三个一组成的自然数,所以它是一个数字。是由数字“4”与“3”排成一列组成的“复合数字” 。此外,在许多上下文中,43 也确实可以表示一个数,由四个十与三个一组成的数。另一方面,在一定的语言环境中出现的数字“43”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025项目管理咨询合同范本
- 多家联盟协议合同范本
- 连锁饮料加盟合同范本
- 2025湖北省非全日制用工合同协议书
- 委托岗位招聘合同范本
- 门市门安装合同范本
- 公司合股协议合同范本
- 公司申请贷款合同范本
- 青岛租房合同范本
- 餐饮劳务离职合同范本
- 2025-2030年中国液压系统行业市场全景评估及未来趋势研判报告
- JCC工作循环检查流程与标准
- 小学1530安全教育
- 牢记教师初心不忘育人使命作新时代合格人民教师课件
- 门窗工程采购相关知识
- 2025风电机组无人机巡检技术方案
- 浙江省台州市住在室内装修施工合同书
- 2025年高压电工资格考试国家总局模拟题库及答案(共四套)
- 《服务器安装与维护》课件
- 金蝶K3供应链操作手册
- 老年患者护理心理护理
评论
0/150
提交评论