第三章 机器人运动学 64页 4.6M.ppt

机器人技术讲稿 677页 58.1M ppt版

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共64页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10278894    类型:共享资源    大小:51.46MB    格式:RAR    上传时间:2018-07-10 上传人:hon****an IP属地:江苏
2.4
积分
关 键 词:
机器人 技术 讲稿 ppt
资源描述:
机器人技术讲稿 677页 58.1M ppt版,机器人,技术,讲稿,ppt
内容简介:
机器人运动学Kinematics of Robotics,3.1 机器人运动方程的表示 (姿态和方向角位置和坐标连杆变换矩阵)3.2 机械手运动方程的求解 (欧拉变换解/滚仰偏变换解/球面变换解)3.3 PUMA560机器人运动方程 (运动分析/运动综合)3.4 机器人的雅可比公式 (微分运动/雅可比矩阵/计算实例),Robotics 运动学,3.1 机器人运动方程的表示3.1.0 A矩阵和T矩阵机械手可以看成由一系列关节连接起来的连杆组构成.用A矩阵描述连杆坐标系间相对平移和旋转的齐次变换.A1表示第一连杆对基坐标的位姿A2表示第二连杆对第一连杆位姿则第二连杆对基坐标的位姿为,Robotics运动学,3.1 机器人运动方程的表示3.1.1 运动姿态和方向角1.运动方向接近矢量a:夹持器进入物体的方向;Z轴方向矢量o:指尖互相指向;Y轴法线矢量n:指尖互相指向;X轴,Robotics运动学,3.1 机器人运动方程的表示3.1.1 运动姿态和方向角2.用旋转系列表示运动姿态欧拉角:绕Z轴转,再绕新Y轴转,绕最新Z轴转. (3-3)注意:坐标变换是右乘.即后面的变换乘在右边.(绕新轴转,连乘),Robotics运动学,3.1 机器人运动方程的表示3.1.1 运动姿态和方向角3.用滚仰偏转表示运动姿态横滚:绕Z轴转,俯仰:绕Y轴转,偏转:绕X轴转. (3-5)注意:左乘.,Robotics运动学,3.1 机器人运动方程的表示3.1.2 运动位置和坐标1.用柱面坐标表示末端运动位置由于上述绕Z轴的旋转,使末端执行器的姿态出现变化,若要执行器姿态不变,则需将其绕执行器Z轴反向旋转. (3-8),Robotics运动学,3.1 机器人运动方程的表示3.1.2 运动位置和坐标2.用球面坐标表示末端运动位置沿Z平移r,绕Y轴转,绕Z轴转. (3-10),Robotics运动学,3.1 机器人运动方程的表示3.1.2 运动位置和坐标表示物体的位置:笛卡尔坐标、柱面坐标、球面坐标1.用柱面坐标表示末端运动位置沿X平移r,绕Z轴转,沿Z轴平移z. (绕原坐标系运动,左乘) (3-7),Robotics运动学,3.1 机器人运动方程的表示3.1.2 运动位置和坐标2.用球面坐标表示末端运动位置沿Z平移r,绕Y轴转,绕Z轴转. (3-10),Robotics运动学,3.1 机器人运动方程的表示3.1.2 运动位置和坐标2.用球面坐标表示末端运动位置由于上述两个旋转,使执行器姿态发生变化.为保持姿态,执行器要绕其自身Y和Z轴反向旋转. (3-11),Robotics运动学,3.1 机器人运动方程的表示3.1.3 连杆变换矩阵1.广义连杆(D-H坐标)全为转动关节:Zi坐标轴;Xi坐标轴;Yi坐标轴;连杆长度ai;连杆扭角i;两连杆距离di;两杆夹角i,Robotics运动学,3.1 机器人运动方程的表示3.1.3 连杆变换矩阵1.广义连杆全为转动关节:Zi坐标轴:沿着i+1关节的运动轴;Xi坐标轴:沿着Zi和Zi-1的公法线,指向离开Zi-1轴的方向;Yi坐标轴:按右手直角坐标系法则制定;连杆长度ai; Zi和Zi-1两轴心线的公法线长度;连杆扭角i: Zi和Zi-1两轴心线的夹角;两连杆距离di:相邻两杆三轴心线的两条公法线间的距离;两杆夹角i :Xi和Xi-1两坐标轴的夹角;,Robotics运动学,3.1 机器人运动方程的表示3.1.3 连杆变换矩阵1.广义连杆(D-H坐标)含移动关节:Zi坐标轴;Xi坐标轴;Yi坐标轴;连杆长度ai=0;连杆扭角i;两连杆距离di;两杆夹角i,Robotics运动学,3.1 机器人运动方程的表示3.1.3 连杆变换矩阵1.广义连杆含移动关节:Zi坐标轴:沿着i+1关节的运动轴;Xi坐标轴:沿着Zi和Zi-1的公法线,指向离开Zi-1轴的方向;Yi坐标轴:按右手直角坐标系法则制定;连杆长度ai; Zi和Zi-1两轴心线的公法线长度;连杆扭角i: Zi和Zi-1两轴心线的夹角;两连杆距离di:相邻两杆三轴心线的两条公法线间的距离;两杆夹角i :Xi和Xi-1两坐标轴的夹角;,Robotics运动学,3.1 机器人运动方程的表示3.1.3 连杆变换矩阵2.广义变换矩阵建立D-H坐标系后,可通过两个旋转、两个平移建立相邻连杆i-1和i间的相对关系。1。绕Zi-1轴转i角,使Xi-1转到与Xi同一平面内;2。沿Zi-1轴平移di,把Xi-1移到与Xi同一直线上;3。沿i轴平移ai-1,把连杆i-1的坐标系移到使其原点与 连杆i的坐标系原点重合的位置;4。绕Xi-1轴转i-1角,使Zi-1转到与Zi同一直线上;这四个齐次变换叫Ai矩阵:,Robotics运动学,3.1 机器人运动方程的表示3.1.3 连杆变换矩阵2.广义变换矩阵对旋转关节: (3-13)对棱柱关节: (3-14),Robotics运动学,3.1 机器人运动方程的表示3.1.3 连杆变换矩阵3.用A矩阵表示T矩阵T6:机械手末端对其基座Z:机械手基座对参考坐标系E:端部工具对机械手末端X:端部工具对参考坐标系,Robotics运动学,3.2 机械手运动方程的求解1)问题:已知手部位姿,求各关节位置2)意义:是机械手控制的关键3)没有一种算法可以通用,需要几何设置引导本节介绍上节的几种特殊变换下的求解算法.,Robotics运动学,3.2 机械手运动方程的求解3.2.1欧拉变换解1.基本隐式方程的解若上式中T矩阵的各元素已知,即 (3-24)对应项相等,有,Robotics运动学,3.2 机械手运动方程的求解3.2.1欧拉变换解 arccos:符号不定; 特殊点不准确; 0或180时,后 (3-25/33) 两式没定义。,Robotics运动学,3.2 机械手运动方程的求解3.2.1欧拉变换解2.用显式方程求各角度 (3-37) (3-39),Robotics运动学,3.2 机械手运动方程的求解3.2.1欧拉变换解其中 (3-40),Robotics运动学,3.2 机械手运动方程的求解3.2.1欧拉变换解由 有: 即 (3-42/43)这样,由 ,得 (3-44)再由 ,得 (3-45),Robotics运动学,3.2 机械手运动方程的求解3.2.2 滚、仰、偏变换解由 (3-47)f定义同前。,Robotics运动学,3.2 机械手运动方程的求解3.2.2 滚、仰、偏变换解由 得 (3-48)这样,由可得: (3-50)再由得 (3-51),Robotics运动学,3.2 机械手运动方程的求解3.2.3 球面变换解右列相等: (3-53),Robotics运动学,3.2 机械手运动方程的求解3.2.3 球面变换解由第二行有: (3-54) (3-56)用 的右列相等,可得: (3-57),Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析 已知转角,求各杆位姿,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析1。确定D-H坐标系全为转动关节:Zi坐标轴:沿着i+1关节的运动轴;Xi坐标轴:沿着Zi和Zi-1的公法线,指向离开Zi-1轴的方向;Yi坐标轴:按右手直角坐标系法则制定;连杆长度ai; Zi和Zi-1两轴心线的公法线长度;连杆扭角i: Zi和Zi-1两轴心线的夹角;两连杆距离di:相邻两杆三轴心线的两条公法线间的距离;两杆夹角i :Xi和Xi-1两坐标轴的夹角;,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析2。确定各连杆D-H参数和关节变量,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析3。求出两杆间的位姿矩阵,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析4。求末杆的位姿矩阵,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析,Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析 (3-64),Robotics运动学,3.3 PUMA600机器人运动方程3.3.1 运动分析5。验证,Robotics运动学,3.3 PUMA600机器人运动方程3.3.2 运动综合已知,求:各转角,Robotics运动学,3.3 PUMA600机器人运动方程3.3.2 运动综合由于 交于一点W,点W在基础坐标系中的位置仅与 有关。据此,可先解出 ,再分离出 ,并逐一求解。 1.求1,Robotics运动学,3.3 PUMA600机器人运动方程3.3.2 运动综合有两个可能的解。其他角度可以类似方法求得。,Robotics运动学,3.3 PUMA600机器人运动方程3.3.2 运动综合解的多重性,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转在基系中的描述:在坐标系T中描述:,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转微分平移变换:微分旋转变换:因为:,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转有:,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转所以有 (3-87),Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转因为: (3-88) (3-89) 微分平移和旋转矢量:,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转记: (3-90) (3-91),Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转例3.1:已知坐标系A和其对基系的微分平移和旋转,求微分变换dA.解:(3-88),Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动1。微分平移和旋转 坐标系A的微分变化,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动2。微分运动的等价变换目的:把一个坐标系内的位姿变换到另一坐标系内由 有:,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动2。微分运动的等价变换与(3-89)元素对应相等,有,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动2。微分运动的等价变换,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动2。微分运动的等价变换,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动2。微分运动的等价变换例3-2:在例1中,求坐标系A的等价微分平移和旋转,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动3。变换式中的微分关系,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动3。变换式中的微分关系由上图,有,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动3。变换式中的微分关系一摄像机,装在机械手的连杆5上。这一连接及机械手的最后一个连杆所处当前位置,分别由下式确定:被观察的目标物体为CAMO。要把机械手的末端引向目标物体,需要知道的坐标系CAM内的微分变化为:求在坐标系T6内所需要的微分变化。,Robotics运动学,3.4 机器人的雅可比公式3.4.1 机器人的微分运动3。变换式中的微分关系例3。3:,Robotics运动学,3.4 机器人的雅可比公式3.4.1
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机器人技术讲稿 677页 58.1M ppt版
链接地址:https://www.renrendoc.com/p-10278894.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!