高中数学单元测试题新人教版选修1【精品打包】
收藏
资源目录
压缩包内文档预览:
编号:1184519
类型:共享资源
大小:583.66KB
格式:RAR
上传时间:2017-05-01
上传人:me****88
IP属地:江西
3.6
积分
- 关 键 词:
-
高中数学
单元测试
新人
选修
精品
打包
- 资源描述:
-
高中数学单元测试题新人教版选修1【精品打包】,高中数学,单元测试,新人,选修,精品,打包
- 内容简介:
-
中学学科网 学海泛舟系列资料 上中学学科网,下精品学科资料 中学学科网 学海泛舟系列资料 版权所有 中学学科网 1 导数 单元测试卷 时间: 120 分钟,满分 150 分 一、选择题:本大题共 12 小题,每小题 5分,共 60 分 只有一项是符合题目要求的 . 1. 设 32( ) 3 4 1 0 5f x x x x ,则(1)f 等于( ) A 6 B 8 C 11D 13 2. 曲线 21 22在点 51,2处的切线的倾斜角为( ) A 34B4C 54D43. 函数 3 3y x x 在 2,3 上( ) A 有最大值 18,最小值 2 B 有最大值 2 ,最小值 2 C 没有最大值和最小值D 有最大值 18,但是没有最小值 4. 如果说某物体作直线运动的时间与距离满足 2( ) 2 1s t t,则其在 的瞬时速度为( ) A 4 B 4 C 5. 对于任意 x ,有 3( ) 4f x x ,(1) 1f ,则此函数为( ) A 4()f x x B 4( ) 2f x xC4( ) 1f x xD 4( ) 2f x x 6. 抛物线 在横坐标为 4x 的点处的切线方程为( ) A 4 1 8 0 B 4 4 0 C 4 4 0 D 4 1 8 0 7. 函数( ) 1 s i nf x x x 0,2x ,则函数( ) A 在 0,2 内是增函数 B 在 0,2内是减函数 C 在 0, 内是增函数,在 ,2内是减函数 D 在 0, 内是减函数,在 ,2内是增函数 8. 设 函 数 3 2 2( ) 3 1 1f x k x k x k 在 0,4上是减函数,则 k 的取值范围是( )A 13kB 103kC 103kD13k 9. 三次函数当 1x 时有极大值 4,当 3x 时有极小值 0,且函数过原点,则 中学学科网 学海泛舟系列资料 上中学学科网,下精品学科资料 中学学科网 学海泛舟系列资料 版权所有 中学学科网 2 此函数是( ) A 3269y x x x B 3269y x x x C 3269y x x x D 3269y x x x 10. 函数 4 3 21 1 14 3 2y x x x 在 1,1 上的最小值为( ) A 0 B 2 C 1 D 131211. 点 P 在曲线 3 23y x x 上移动时,过点 P 的切线的倾斜角的取值范围是( ) A 0, B 30 , ,24 C30 , ,2 2 4 D 30 , ,24 12. 方程5 4 36 1 5 1 0 1 0x x x 的实解的集合中( ) A 至少有 2 个元素 B 至少有 3 个元素 C 至多有 1 个元素 D 恰好有 5 个元素 二、填空题:本大题共 4 小题,第小题 5 分,共 20 分 13. 曲线 3y x x 与直线2y x b 相 切 , 则 实 数b 。 14. 函数 2 14的单调增区间为 。 15. 函数 s i ns i n c o 的导数y = 。 16. 已知函数 ()1,1 上的奇函数,且对于 1,1x ,恒有 ( ) 0成 立 , 若22( 2 2 ) ( 2 1 ) 0f a f a a ,则实数a 的取值范围是 。 三、解答题:本大题 6 小题,共 70 分 17. (本题满分 10 分) 求过曲线上点 1,32P 且与过这点的切线垂直的直线方程。 18. (本题满分 10 分) 已知函数53( ) 1f x x a x b x , 当 且 仅 当1x , 1x 时取得极值,且极大值比极小值大 4 ,求 , 中学学科网 学海泛舟系列资料 上中学学科网,下精品学科资料 中学学科网 学海泛舟系列资料 版权所有 中学学科网 3 19. (本题满分 12 分 ) 设函数2 3( ) 3 af x x x, 0,x ,求正数 对于任意 0,x 都有不等式 ( ) 20成立。 20. (本小题满分 12 分 )已知函数32( ) 3 2f x x a x b x 在点 1x 处有极小值 1 ,试确定 ,求出 () 21. (本题满分 12 分) 已知函数 2 2( ) 1 ,x x af x ,( 1 )当12a 时,求函数 () 2)若对任意的 1,x , ( ) 0恒成立,试求实数 a 的取值范围。 22. (本小题满分 14 分 ) 要做一个长方体的带盖的盒子,其体积为 372其底面两邻边长之比为 1:2 ,则盒子的长、宽、高各为多少时,才能使其表面积最小? 答案部分: 1 解 析 : 2( ) 9 8 1 0f x x x ,2( 1 ) 9 1 8 1 1 0 7 1f 。故选 C 。 2 解析: , 1 1 ,k , 0135 。故选 A 。 3 解析: 233,由 0y 得 1x 或1x ,又 2,3x , 1x 得 1x为两极值点, ( 1) 2f , (1) 2f ,又( 2 ) 8 6 2f , (3) 18f ,故最大值为 18 ,最小值为 2 ,故选 A 。 4 解析: 22 4 2S t t t , 中学学科网 学海泛舟系列资料 上中学学科网,下精品学科资料 中学学科网 学海泛舟系列资料 版权所有 中学学科网 4 44S t t, ,故选 D 。 5 解析:选项 ,不符合 (1) 1f ,故选 B 。 6 解析: 1 212 ,则切线的斜率为414, 切 线 的 方 程 为 :4 4 0 。故选 C 。 7 解析: ( ) 1 c o sf x x ,令 ( ) 0得 0,2x 。故选 A 。 8 解析: 2( ) 3 6 1f x k x k 3 6 1x k x k ,令 ( ) 0,根据题意有 6143 ,得 103k。故选B 。 9 解析:符合 (1) 4f 的只有 B 项,故选B 。 10 解析: 3 2()f x x x x 21x x ,当0x 时, () ,当 0x 时,()于 0 , ()x 时取得极小值 0 ,故选 A 。 11 解析: 231k y x , 1,k , 30 , ,24 。故选 D 。 12 解 析 : 研 究 函 数5 4 36 1 5 1 0 1y x x x ,则 4 3 23 0 6 0 3 0y x x x 2230 1,函数在 R 上恒为增函数,函数和 x 轴到多有一个交点。故选 C 。 13 解析: 231,由 23 1 2x 得1x , 1x 时 0y , 1x 时, 0y , 两 切 点 为 1,0 和 1,0 , 代 入2y x b得 2b 。 14 解析: 2180 得 3 18x ,12x , (),2。 15 解析: 21s i n c o sy 。 16 解析:由题意知函数在 1,1 上是减函数,函数在区间 1,1 上是奇函数,22( 2 ) ( 2 1 ) 0f a a f a a , 所 以( 2 ) ( 2 1 )f a a f a a ,22221 2 11 2 1 12 2 1a a a ,则 中学学科网 学海泛舟系列资料 上中学学科网,下精品学科资料 中学学科网 学海泛舟系列资料 版权所有 中学学科网 5 21 2a 。 17 解析: ,切线的斜率为332 ,因此所求直线的斜率为11 2 33k k ,因此所求直线方程为1 2 32 3 3 ,即2 3 2 3 103 9 2 。 18 解析: 4 2( ) 5 3f x x a x b ,当且仅当 1x , 1x 时取得极值,所以:一方面 ( 1)f = (1) 0f ,即 5 3 0 ;另 一 方 面 , 由 于 2 2( ) 1 5 5 3f x x x a ,所以,5 3 0a。所以, ()x 取得极大值,在 1x 取得极小值,所以( 1) (1) 4 ,即 3 ,与5 3 0 联立,解得 1a , 2b 。 19 解析: 43( ) 6 af x x x,令 ( ) 0,则 152,当 1502时,( ) 0,当152时, ( ) 0, 152是 其唯一的极值点,故在152时, ()得最小值,要使( ) 20恒成立,只要15 202即可,解得 64a 。 20 解析: 2( ) 3 6 2f x x a x b ,由已知得: (1) 0(1) 1,即 3 6 2 01 3 2 1 ,1312 , 函 数 解 析 式 为 :32()f x x x x ,2( ) 3 2 1f x x x ,令 ( ) 0,得13x 或 1x ,则 (),3 和 1, 上为增函数,令 ( ) 0,得1 13 x ,则 (),13上为减函数。 21 。 解 析 :( 1 )当 12a时,1( ) 22f x x x , 21( ) 1 2fx x ,当1x 时, ( ) 0, () 1, 是增函数,函数 () 1, 上的最小值为 7(1)2f 。( 2) 22()x ,若 中学学科网 学海泛舟系列资料 上中学学科网,下精品学科资料 中学学科网 学海泛舟系列资料 版权所有 中学学科网 6 1a ,则当 1x 时, 22( ) 0x,() 1, 上是增函数,函数 () 1, 上的最小值为 (1) 3 。由30a 得 3a , 31a 。 若1a ,由 22( ) 0x得 或, () ,a 上是增函数,由 22( ) 0x得 a x a , () ,上是减函数,() 1, 上的最小值为 ()( ) 2 2 0f a a 恒 成 立, 综 上,3a 时对任意 x 1, , ( ) 0恒成立。 22解析:设底面较短的边长为 则另一
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。