


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
感悟导数的运算法则问题 熟练掌握导数的运算是学好导数的前提,也是近年高考考查的一个方面,这部分主要考查公式的运用和运算法则以及综合应用。 一、求导公式以及导数运算法则的应用 例1 求下列函数的导数: (1); (2); 分析:仔细观察和分析所给函数表达式的结构规律,紧扣求导运算法则,联系基本函数的求导公式可以迅速解决一类简单函数的求导问题。若不直接具备求导法则条件,可先进行适当的恒等变形。 解析:(1)。 (2)。 评注:运用可导函数求导法则和导数公式求可导函数的导数的基本步骤如下: (1)分析函数的结构和特征; (2)选择恰当的求导法则和导数公式求导; (3)整理得结果。 二、导数运算在解析几何中的应用 例2 在抛物线上取横坐标分别为与的两点,过这两点引割线,在抛物线上哪一点处的切线平行于所引的割线? 分析:要求平行于所引割线的切线,则切线的斜率应与所引割线的斜率相等。 解析:将与代入抛物线方程,得, 则所引割线的斜率与切线斜率均为=5。 设符合题意的切点坐标为, ,代入抛物线方程得, 故在抛物线上过点处的切线平行于所引的割线。 评注:导数不仅有求斜率的功能,而且还有求点的坐标的功能。 三、导数计算的创新应用 例3 求满足下列条件的函数。 (1)是三次函数,且,; (2)是一次函数,。 分析:(1)可设三次函数(),由条件确定、;(2)由是一次函数,可设(),然后利用条件确定。解析:(1)设(),则, 由得, 由得, 由,可建立方程组, 解得,。 (2)由是一次函数可知为二次函数,设(),则。 把、代入方程得, 即。 要使对任意方程都成立,则需, 解得, 。 评注:注意(2)用待定系数法确定二次函数的系数,认真体会所用的方法。 例4 已知抛物线通过点,且在点处与直线相切,求、的值。 分析:该例涉及三个未知量,已知中有三个独立条件,因此,要通过解方程组来确定、的值。 解析:过点,。 ,曲线过点的切线的斜率为。 又曲线过点,。 由解得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建电商营销方案设计
- 珍珠奶茶的营销方案策划
- 减肥水果营销策划方案
- 钢筋工程质量管理
- 酒店网站建设方案咨询
- 咨询方案的总结
- 钢箱梁施工方案整改
- 建筑方案设计资源包括哪些
- 跑步健身活动方案策划
- 人工智能技术与AIGC应用 课件全套 第1-8章 认识人工智能 - AIGC 的发展与展望
- 2025年国防教育知识竞赛试题(附答案)
- 非车主押车借款合同范本
- T-CES 153-2022 电力巡检无人机边缘智能终端技术规范
- GJB2220A-2018 航空发动机用钛合金饼、环坯规范
- 《中国金融学》课件 第4章 信用形式与信用体系-课件
- 新版2026统编版小学道德与法治三年级上册 第6课《争做未来科学家》第2课时 做个小小科学家 教学课件
- 康复医生进修汇报课件
- 招标及采购基础知识培训课件
- 中国邮政储蓄银行2025年反洗钱知识考试题库(带答案)
- 2025年医院三基三严试题题库(附答案)
- 医院消毒供应中心控感管理规范
评论
0/150
提交评论