已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档 2016 全新精品资料 全程指导写作 独家原创 1 / 22 解分式方程练习题中考难度 一解答题 1解方程: 2解关于的方程: 3解方程 4解方程: 5解方程: 6解分式方程: 7解方程: 8解方程: 9解分式方程: 10解方程: 11解方程: 12解方程: 13解分式方程: =+1 14解方 程: 15解方程: 解不等式组 16解方程: 17 解分式方程 ; 解不等式组 18解方程: 19计算: | 2|+解分式方程: 精品文档 2016 全新精品资料 全程指导写作 独家原创 2 / 22 20解方程: 21解方程: 22解方程: 23解分式方程: 24解方程: 25解方程: 26解方程: +1) +; 0 1=+1 +=1 +=1 27解方程: 28解方程: 29解方程: 30解分式方程: 答案与评分标准 一解答题 1解方程: 考点:解分式方程。 专题:计算题。 分析:方程两边都乘以最简公分母 y,得到关于 y 的一元一方程,然后求出方程的解,再把 y 的值代入最简公分母进行检验 解答:解:方程两边都乘以 y,得 精品文档 2016 全新精品资料 全程指导写作 独家原创 3 / 22 2y+y=, 2222y+y y=3y 4y+1, 3y=1, 解得 y=, 检验:当 y=时, y= 0 , y=是原方程的解, 原方程的解为 y= 点评:本题考查了解分式方程,解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 2解关于的方程: 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是,方程两边乘 最简公分母,可以把分式方程转化为整式方程求解 解答:解:方程的两边同乘,得 x=+2, 整理,得 5x+3=0, 精品文档 2016 全新精品资料 全程指导写作 独家原创 4 / 22 解得 x= 检验:把 x=代入 0 原方程的解为: x= 点评:本题考查了解分式方程解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 3解方程 考点:解分式方程。 专题:方程思想。 分析:观察可得最简公分母是,方程两边 乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:两边同时乘以, 得 x =3 解这个方程,得 x= 1 检验: x= 1 时 =0, x= 1 不是原分式方程的解, 原分式方程无解 点评:考查了解分式方程,解分式方程的基本思想是“ 转化思想 ” ,把分式方程转化为整式方程求解 解分式方程一定注意要验根 4解方程: =+1 考点:解分式方程。 专题:计算题。 精品文档 2016 全新精品资料 全程指导写作 独家原创 5 / 22 分析:观察可得最简公分母是 2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:原方程两边同乘 2,得 2=3+2, 解得 x=, 检验:当 x=时, 20 , 原方程的解为: x= 点评:本题主要考查了解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解,解分式方程一定注意要验根,难度适中 5解方程: 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为 整式方程求解 解答:解:方程的两边同乘,得 3x+3 x 3=0, 解得 x=0 检验:把 x=0 代入 = 10 原方程的解为: x=0 点评:本题考查了分式方程和不等式组的解法,注:解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解 精品文档 2016 全新精品资料 全程指导写作 独家原创 6 / 22 解分式方程一定注意要验根不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到 6解分式方程: 考点:解分式方程。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:方程两边同乘, 得 x = 化简,得 2x 1= 1 解得 x=0 检验:当 x=0 时 0 , x=0 是原分式方程的解 点评:本题考查了分式方程的解法,注:解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解 键入文字 一解答题 1解方程: 2解关于的方程: 3解方程 4解方程: 精品文档 2016 全新精品资料 全程指导写作 独家原创 7 / 22 5解方程: 6解分式方程: 7解方程: =+1 8解方程: 9解分式方程: 10解方程: 11解方程: 12解方程: 13解分式方程: 14解方程: 解方程: 15 解不等式组 16解方程: 17 解分式方程 ; 解不等式组 18解方程: 19计算: | 2|+解分式方程: 20解方程: 21解方程: 精品文档 2016 全新精品资料 全程指导写作 独家原创 8 / 22 22解方程: 23解分式方程: 24解方程: 25解方程: 26解方程: +1) +; 0 1=+1 +=1 +=1 27解方程: 28解方 程: 29解方程: 30解分式方程: 答案与评分标准 一解答题 1解方程: 考点:解分式方程。 专题:计算题。 分析:方程两边都乘以最简公分母 y,得到关于 y 的一元一方程,然后求出方程的解,再把 y 的值代入最简公分母进行检验 解答:解:方程两边都乘以 y,得 2y+y=, 2222y+y y=3y 4y+1, 精品文档 2016 全新精品资料 全程指导写作 独家原创 9 / 22 3y=1, 解得 y=, 检验:当 y=时, y= 0 , y=是原方程的解, 原方程的解为 y= 点评:本题考查了解分式方程,解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 2解关于的方程: 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:方程的 两边同乘,得 x=+2, 整理,得 5x+3=0, 解得 x= 检验:把 x=代入 0 精品文档 2016 全新精品资料 全程指导写作 独家原创 10 / 22 原方程的解为: x= 点评:本题考查了解分式方程解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 3解方程 考点:解分式方程。 专题:方程思想。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:两边 同时乘以, 得 x =3 一解答题 1解方程: 2解关于的方程: 3解方程 4解方程: =+1 5解方程: 6解分式方程: 键入文字 7解方程: 8解方程: 精品文档 2016 全新精品资料 全程指导写作 独家原创 11 / 22 9解分式方程: 10解方程: 11解方程: 12解方程: 13解分式方 程: 14解方程: 15解方程: 解不等式组 16解方程: 17 解分式方程 ; 21解方程: +=1 解不等式组 18解方程: 19计算: | 2|+0 1 +; 解分式方程: = +1 20解方程: 键入文字 精品文档 2016 全新精品资料 全程指导写作 独家原创 12 / 22 22解方程: 23解分式方程: 24解方程: 25解方程: 26解方程: +=1 27解方程: 28解方程: 29解方程: 30解分式方程: 答案与评分标准 一解答题 1解方程: 考点:解分式方程。 专题:计算题。 分析:方程两边都乘以最简公分母 y,得到关于 y 的一元一方程,然后求出方程的解,再把 y 的值代入最简公分母进行检验 解答:解:方程两边都乘以 y,得 y=, y2+y=3 4y+1, y=1, 解得 y=, 精品文档 2016 全新精品资料 全程指导写作 独家原创 13 / 22 检验:当 y=时, y= 0 , y= 是原方程的解, 原方程的解为 y= 点评:本题考查了解分式方程,解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 2解关于的方程: 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 键入文字 解答:解:方程的两边同乘,得 x=+2, 整理,得 5x+3=0, 解得 x= 检验:把 x=代入 0 原方程的解为: x= 点评:本题考查了解分式方程解分式方程的基本 思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 3解方程 精品文档 2016 全新精品资料 全程指导写作 独家原创 14 / 22 考点:解分式方程。 专题:方程思想。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:两边同时乘以, 得 x =3 解这个方程,得 x= 1 检验: x= 1 时 =0, x= 1 不是原分式方程的解, 原分式方程无解 点评:考查了解分式方程,解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解 解分式方程一定注意要验根 4解方程: = +1 考点:解分式方程。 专题:计 算题。 分析:观察可得最简公分母是 2,方程两边乘 最简公分母,可以把分式方程转化为整式方程求解 解答:解:原方程两边同乘 2,得 2=3+2, 解得 x=, 检验:当 x=时, 20 , 原方程的解为: x= 点评:本题主要考查了解分式方程的基本思想是 “ 转化 思想 ” ,把分式方程转化为整式方程求解,解分式方程一定注意要验根,难度适中 5解方程: 精品文档 2016 全新精品资料 全程指导写作 独家原创 15 / 22 考点:解分式方程。 专题:计算题。 分析:观 察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:方程的两边同乘,得 x+3 x 3=0, 解得x=0 检验:把 x=0代入 = 10 原方程的解为: x=0 点评:本题考查了分式方程和不等式组的解法,注:解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解 解分式方程一定注意要验根不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到 6解分式方程: 考点:解分式方 程。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:方程两边同乘, 得 x = 化简,得 2x1= 1 解得 x=0 检验:当 x=0 时 0 , x=0 是原分式方程的解 点评:本题考查了分式方程的解法,注:解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求精品文档 2016 全新精品资料 全程指导写作 独家原创 16 / 22 解 解分式方程一定注意要验根 7解方程: 考点:解分式方程。 专题:计算题。 分析:先求分母,再移项,合并同类项,系数化为 1,从而得出答案 解答:解:去分母,得 x 3=4x 移项,得 x 4x=3, 合并同类项,系数化为 1,得 x= 1 经检验, x= 1是方程的根 点评:解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 8解方程: 考点:解分式方程。 键入文字 专题:计算题。 分析:观察可得最简公分母是 x,方程两边乘最简公分母,可以把分式方程转化 为整式方程求解 解答:解:方程两边同乘以 x, 得 2+x, 2x+6+x2=3x, x=6 精品文档 2016 全新精品资料 全程指导写作 独家原创 17 / 22 检验:把 x=6代入 x=540 , 原方程的解为 x=6 点评:解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解; 解分式方程一定注意要验根 9解分式方程: 考点:解分式方程。 专题:计算题。 分析:观察两个分母可知,公分母为 x 2,去分母,转化为整式方程求解,结果要检 验 解答:解:去分母,得 4x = 3, 去括号,得 4xx+2= 3, 移项,得 4x x= 2 3, 合并,得 3x= 5, 化系数为 1,得 x=, 检验:当 x=时, x 20 , 原方程的解为 x= 点评:本题考查了分式方程的解法解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解解分式方程一定注意要验根 10解方程: 考点:解分式方程。 专题:计算题。 分析:观察分式方程的两分母,得到分式方程的最简公分母为,在方程两边 都乘以最简公分母后,转化为整式方程求解 解答:解: 方程两边都乘以最简公分母得: =5, 解得: x=9, 精品文档 2016 全新精品资料 全程指导写作 独家原创 18 / 22 检验:当 x=9 时, =600 , 原分式方程的解为x=9 点评:解分式方程的思想是转化即将分式方程转化为整式方程求解;同时要注意解出的 x 要代入最简公分母中进行检验 11解方程: 考点:解分式方程。 专题:方程思想。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解 :方程的两边同乘,得 =0, 解得 x=4 检验:把 x=4 代入 =120 原方程的解为: x=4 点评:考查了解分式方程,注意: 解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解 解分式方程一定注意要验根 12解方程: 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:原方程两边同乘, 得 x =3, 展开、整理得 2x= 5, 解得 x= 精品文档 2016 全新精品资料 全程指导写作 独家原创 19 / 22 检验:当 x=0 , 原方程的解为: x= 点评:本题主要考查了分式方程都通过去分母转化成整式方程求解,检验是解分式方程必不可少的一步,许多同学易漏掉这一重要步骤,难度适中 13解分式方程: 考点:解分式方程。 专题:计算题。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:方程两边乘以, 得: 3 12=2x, 12=24x, 4x 12=0, =0, 解得: 2, , 检验:把 x= 2 代入 =0则 x= 2 是原方程的增根, 键入文字 检验:把 x=6代入 =80 x=6 是原方程的根 点评:本题考查了分式方程的解法,注: 解分式方程的基本思想是 “ 转化思想 ” ,把分式方程转化为整式方程求解 精品文档 2016 全新精品资料 全程指导写作 独家原创 20 / 22 解分式方程一定注意要验根 14解方程 : 考点:解分式方程。 分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解 解答:解:方程的两边同乘,得 1=x 2, 解得 x=4 检验:把 x=4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 签订动物管理协议书
- 装修工程清场协议书
- 芭蕾舞演员婚前协议书
- 签了合同第三方协议
- 物业没签订服务协议书
- 金融居间协议合同范本
- 个人财产分期协议书
- 施工管理提成协议书
- 分房协议书格式模板
- 顺位抵押担保合同范本
- 保险专业代理机构高级管理人员任职资格申请表
- 法学概论(第七版) 课件全套 谷春德 第1-7章 我国社会主义法的基本理论 - 国际法
- 产业经济学第四版教学课件第十三章 行业自律
- 《网络空间安全概论》课件7-1-2人工智能安全
- 第八课+法治中国建设+高中政治统编版必修三
- 软件工程中的软件部署与运维指南
- 道路运输企业两类人员安全考核题库(含答案)
- 下肢深静脉血栓护理业务学习
- 房地产管理-华中科技大学中国大学mooc课后章节答案期末考试题库2023年
- 中华碑帖精粹:赵孟頫胆巴碑
- 教师职业道德与专业发展知到章节答案智慧树2023年山东师范大学
评论
0/150
提交评论