




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SY-011实 习 报 告 实习名称: 数学建模实验 院系名称: 数学系 专业班级: 信息与计算科学09-1 学生姓名: 蒋金海 学 号: 20091876 指导教师: 赵爽 黑龙江工程学院教务处制2011 年 7 月实习名称数学建模实验实习时间2011年 7 月 11 日至 2011 年 7 月 17 日 共 1 周实习单位或实习地点实验楼 718室实习单位评语:(分散实习填)签字: 公章: 年 月 日指导教师评语: 成 绩指导教师签字:年 月 日注:1、在此页后附实习总结。其内容应包括:实习目的、实习内容及实习结果等项目。2、此页为封皮,用A4幅面纸正反面打印。3、实习总结使用A4幅面纸张书写或打印,并附此页后在左侧一同装订。 一、实习目的数学建模是信息与计算机科学本科专业选修课程。本课程的实验内容要求学生有一定量的实践才能切实掌握数学建模的各个环节。培养学生掌握数值分析基本方法在实际生活中的应用,使学生具备能够利用数学软件编程解决数值分析问题的能力,把抽象的数学转换成解决实际问题的能力。二、课程实习环境安装有Windows2000/2003/XP操作系统、MATLAB5.0以上版本软件、Lindo/Lingo软件的计算机。三、实习内容 一.优化模型的建立(一)目的和要求1、掌握线性规划模型。2、能用MATLAB的优化工具linprog或者Lingo/Lindo求解线性规划问题。3、具体步骤应包括:摘要、问题重述、符号说明、模型假设、模型建立、模型求解、结果及其分析(注:可根据情况适当调整步骤;整个建模过程应在题目内容后另起一页开始写)。(二)内容:某厂出售三种不同品种的商品,每个品种含有原料甲、乙、丙、丁,但每个品种所含有的这四种原料的比例不同。由于市场的供需要求,每周商店从供应商处能够得到的每类果仁的最大数量和售价(如下表1所示),为了维护厂家的质量信誉,每个品种中所含有的原料最大、最小比例是必须满足的(如下表2所示):表1原料售价(元/千克)每周最大供应量(千克)甲0.452000乙0.554000丙0.705000丁0.503000表2品种含量需求售价(元/千克)A丙不超过20%0.89丁不低于40%乙不超过25%甲没有限制B丙不超过35%1.10甲不低于40%乙、丁没有限制C丙含量位于30%50%之间1.80甲不低于30%乙、丁没有限制现该厂希望确定每周购进甲、乙、丙、丁的数量,使周利润最大,建立数学模型,帮助该厂管理人员解决原料混合的问题。二.MATLAB程序设计(一)目的和要求 认识MATLAB的操作界面,初步掌握MATLAB的使用方法。掌握MATLAB的数值运算,常用的绘图方法,M文件的创建及调用。(二) 内容1、向量运算:已知向量,求(1) (2) (3)(4)的模2、矩阵运算:(1)输入矩阵:(2)乘法运算:,求(3)矩阵的转置:,求(4)矩阵的逆:,求3、图形绘制(1)画曲线y=cosx, x-, (plot(x, y))(2)在同一图中绘制y=sinx , z=cos2x x0,2 (plot(x1,y,x2,z)(3) 用不同颜色和线型画出函数,的22的多子图(subplot、fplot)(4)画空间螺旋线(用命令plot3(x,y,z))(5)绘制空间曲面之旋转抛物面。(r=sqrt(x.2+y.2); z=sin(r)./r 用命令x, y = meshgrid(x, y))4、用函数diff(f,x),求下列函数一阶导数(1), (2) 5、用函数int(f, v),求不定积分6、用函数int(f, v, a, b),求定积分7、用函数dsolve( ),求解微分方程8、用函数diff(z,x,n),求下列函数的偏导数:设,求,。实习结果(一):原料配比问题摘要:此问题属于一个优化问题,即在一系列的限制条件中寻找最优的方案。所以这里我们采用优化模型,优化模型是为了使在原材料供应量受到限制的前提下使得决策的问题达到最优,在本问题中,要求我们决定各类产品总周利润最大的前提下,需甲、乙、丙、丁的数量我们在这篇文章里假设购进的原料全部配制成产品销售,对问题进行优化,然后通过产品制作及供应量限制的条件列出条件方程。然后用lingo进行模型求解。关键词:优化模型、周利润、原料配比一 问题重述某厂出售三种不同品种的商品,每个品种含有原料甲、乙、丙、丁,但每个品种所含有的这四种原料的比例不同。由于市场的供需要求,每周商店从供应商处能够得到的每类果仁的最大数量和售价(如下表1所示),为了维护厂家的质量信誉,每个品种中所含有的原料最大、最小比例是必须满足的(如下表2所示):表1原料售价(元/千克)每周最大供应量(千克)甲0.452000乙0.554000丙0.705000丁0.503000表2品种含量需求售价(元/千克)A丙不超过20%0.89丁不低于40%乙不超过25%甲没有限制B丙不超过35%1.10甲不低于40%乙、丁没有限制C丙含量位于30%50%之间1.80甲不低于30%乙、丁没有限制现要确定每周购进甲、乙、丙、丁的数量,使周利润最大,建立数学模型,帮助该厂管理人员解决原料混合的问题。二、问题假设:1.假设所有原料都投入生产,没有剩余。2.假设工厂生产出产品均全部销售,没有剩余。3.在此过程中没有意外事件发生。三、符号说明x,y,z分别表示A、B、C三种糖果;表示制成A产品中甲、乙、丙、丁的含量,y表示制成B产品中甲、乙、丙、丁的含量,z表示制成C产品中甲、乙、丙、丁的含量。其中i=1,2,3,4. x,y,z;W为总周利润,单位:元。四、模型建立约束条件:1.原料限制2.原料配比的限制 对于品种A: 对于品种B: 对于品种C: x,y,z;五、模型求解用lingo软件对模型进行求解,具体步骤如下:model:max=0.89*x1+0.89*x2+0.89*x3+0.89*x4+1.10*y1+1.10*y2+1.10*y3+1.10*y4+1.80*z1+1.80*z2+1.80*z3+1.80*z4-0.45*x1-0.45*y1-0.45*z1-0.55*x2-0.55*y2-0.55*z2-0.70*x3-0.70*y3-0.70*z3-0.50*x4-0.50*y4-0.50*z4;x1+y1+z1=2000;x2+y2+z2=4000;x3+y3+z3=5000;x4+y4+z4=3000;x3-0.2*x1-0.2*x2-0.2*x3-0.2*x4=0;x2-0.25*x1-0.25*x2-0.25*x3-0.25*x4=0;y3-0.35*y1-0.35*y2-0.35*y3-0.35*y4=0;z3-0.3*z1-0.3*z2-0.3*z3-0.3*z4=0;z3-0.5*z1-0.5*z2-0.5*z3-0.5*z4=0;end结果如下:Global optimal solution found. Objective value: 10069.70 Total solver iterations: 12 Variable Value Reduced Cost X1 0.000000 3.321212 X2 1363.636 0.000000 X3 1090.909 0.000000 X4 3000.000 0.000000 Y1 0.000000 0.000000 Y2 0.000000 0.000000 Y3 0.000000 3.047619 Y4 0.000000 0.3454545 Z1 2000.000 0.000000 Z2 2636.364 0.000000 Z3 2030.303 0.000000 Z4 0.000000 0.3454545 Row Slack or Surplus Dual Price 1 10069.70 1.000000 2 0.000000 3.916667 3 0.000000 0.1500000 4 1878.788 0.000000 5 0.000000 0.5454545 6 0.000000 0.3454545 7 818.1818 0.000000 8 0.000000 0.3454545 9 0.000000 -3.666667 10 0.000000 3.047619 11 0.000000 -3.666667 12 30.30303 0.000000 13 1303.030 0.000000六、结论及其分析通过lingo计算得出, X1 = 0.000000 X2 = 1363.636X3 = 1090.909 X4 = 3000.000Y1 = 0.000000Y2 = 0.000000 Y3 = 0.000000 Y4 = 0.000000 Z1 = 2000.000 Z2 = 2636.364 Z3 = 2030.303 Z4 = 0.000000 即:A产品中含有甲原料0kg,含有乙原料1363.636kg,含有丙原料1090.909kg,含有丁原料3000.000kg。 B产品不生产。 C产品中含有甲原料2000.000kg,含有乙原料2636.364kg,含有丙原料2030.303kg,含有丁原料0kg。 按此方案,总周利润为10069.70元。参考文献1 吕显瑞等,数学建模竞赛辅导教材,长春:吉林大学出版社,2002。2 刘来福,曾文艺,数学模型与数学建模 北京:北京师范大学出版社,1997。3 陈如栋,于延荣,数学模型与数学建模,北京:国防工业出版社,2006。4 姜启源,谢金星,叶俊,数学模型(第三版),北京:高等教育出版社,2003。5 梁炼,数学建模。华东理工大学大学出版社 2005.3。6 周义仓,赫孝良,西安交通大学出版社,1998.8。7 邓俊辉 译,计算几何-算法与应用(第二版)北京:清华大学出版社,2005.9。8 刘卫国,MATLAB程序设计教程,北京:中国水电水利出版社,2005。9 熊慧,论人口预测对上海市未来十年人口总数的预测,人口研究,28(1):88-90,2003。10 2003年国民经济和社会发展统计公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酶标仪使用方法
- 幼儿园班主任发言稿模版
- 新质生产力讲座大学
- 局限性胸膜间皮瘤的临床护理
- 江西省九江市九江有色金属冶炼厂职工子弟学校2025届七年级数学第二学期期末复习检测试题含解析
- 先天性马蹄内翻足健康宣讲课件
- 手部先天性畸形的临床护理
- 山东省平原县2025届数学七下期末复习检测模拟试题含解析
- 溃疡基因转录分析
- 开展2023愚人节创意活动方案大全
- 糖尿病患者体重管理专家共识(2024版)
- 机械加工生产流程
- 人教版二年级语文下册第一单元测评卷(无答案)
- AI如何赋能职场人:大模型落地企业方法论
- 2024年度电影项目制片人聘用合同书标准版3篇
- 水利工程监理生产安全事故隐患排查制度
- 宁夏回族自治区银川市兴庆区银川一中2025届高考压轴卷数学试卷含解析
- 风电建设安全课件
- 门窗合同模板范文
- 上海市居住房屋租赁合同2014版
- 锌锭购销协议
评论
0/150
提交评论