吉阳区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
吉阳区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
吉阳区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
吉阳区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
吉阳区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉阳区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在中,则的取值范围是( )1111A B C. D2 用反证法证明命题:“已知a、bN*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为( )Aa、b都能被5整除Ba、b都不能被5整除Ca、b不都能被5整除Da不能被5整除3 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)4 已知偶函数f(x)=loga|xb|在(,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( )Af(a+1)f(b+2)Bf(a+1)f(b+2)Cf(a+1)f(b+2)Df(a+1)f(b+2)5 下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=6 设集合M=(x,y)|x2+y2=1,xR,yR,N=(x,y)|x2y=0,xR,yR,则集合MN中元素的个数为( )A1B2C3D47 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD8 满足集合M1,2,3,4,且M1,2,4=1,4的集合M的个数为( )A1B2C3D49 阅读如图所示的程序框图,运行相应的程序若该程序运行后输出的结果不大于20,则输入的整数i的最大值为( )A3B4C5D610设函数f(x)=,f(2)+f(log210)=( )A11B8C5D211向高为H的水瓶中注水,注满为止如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是( )ABCD12对于函数f(x),若a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )ACD二、填空题13已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是14直角坐标P(1,1)的极坐标为(0,0)15()0+(2)3 =16在ABC中,则_17已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为18已知x是400和1600的等差中项,则x=三、解答题19(本小题满分10分)选修4-1:几何证明选讲如图,四边形外接于圆,是圆周角的角平分线,过点的切线与延长线交于点,交于点(1)求证:;(2)若是圆的直径,求长20已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD21已知二次函数f(x)=x2+bx+c,其中常数b,cR()若任意的x1,1,f(x)0,f(2+x)0,试求实数c的取值范围;()若对任意的x1,x21,1,有|f(x1)f(x2)|4,试求实数b的取值范围22如图,边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点()证明:AMPM; ()求点D到平面AMP的距离23已知数列an满足a1=1,an+1=(nN*)()证明:数列+是等比数列;()令bn=,数列bn的前n项和为Sn证明:bn+1+bn+2+b2n证明:当n2时,Sn22(+) 24已知函数f(x)=lnxax+(aR)()当a=1时,求曲线y=f(x)在点(1,f(1)处的切线方程;()若函数y=f(x)在定义域内存在两个极值点,求a的取值范围吉阳区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】考点:三角形中正余弦定理的运用.2 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故选:B3 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反4 【答案】B【解析】解:y=loga|xb|是偶函数loga|xb|=loga|xb|xb|=|xb|x22bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=loga|x|当x(,0)时,由于内层函数是一个减函数,又偶函数y=loga|xb|在区间(,0)上递增故外层函数是减函数,故可得0a1综上得0a1,b=0a+1b+2,而函数f(x)=loga|xb|在(0,+)上单调递减f(a+1)f(b+2)故选B5 【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题6 【答案】B【解析】解:根据题意,MN=(x,y)|x2+y2=1,xR,yR(x,y)|x2y=0,xR,yR(x,y)|将x2y=0代入x2+y2=1,得y2+y1=0,=50,所以方程组有两组解,因此集合MN中元素的个数为2个,故选B【点评】本题既是交集运算,又是函数图形求交点个数问题7 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D8 【答案】B【解析】解:M1,2,4=1,4,1,4是M中的元素,2不是M中的元素M1,2,3,4,M=1,4或M=1,3,4故选:B9 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件ni,s=2,n=1满足条件ni,s=5,n=2满足条件ni,s=10,n=3满足条件ni,s=19,n=4满足条件ni,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件ni,退出循环,输出s的值为19故选:B【点评】本题主要考查了循环结构的程序框图,属于基础题10【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用11【答案】 A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系如图所示,此时注水量V与容器容积关系是:V水瓶的容积的一半对照选项知,只有A符合此要求故选A【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题12【答案】D【解析】解:由题意可得f(a)+f(b)f(c)对于a,b,cR都恒成立,由于f(x)=1+,当t1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件当t10,f(x)在R上是减函数,1f(a)1+t1=t,同理1f(b)t,1f(c)t,由f(a)+f(b)f(c),可得 2t,解得1t2当t10,f(x)在R上是增函数,tf(a)1,同理tf(b)1,tf(c)1,由f(a)+f(b)f(c),可得 2t1,解得1t综上可得,t2,故实数t的取值范围是,2,故选D【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题二、填空题13【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题14【答案】 【解析】解:=,tan=1,且0,=点P的极坐标为故答案为:15【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:16【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:217【答案】2 【解析】解:如图所示,连接A1C1,B1D1,相交于点O则点O为球心,OA=设正方体的边长为x,则A1O=x在RtOAA1中,由勾股定理可得: +x2=,解得x=正方体ABCDA1B1C1D1的体积V=2故答案为:218【答案】1000 【解析】解:x是400和1600的等差中项,x=1000故答案为:1000三、解答题19【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力,则,在中,在中,所以20【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。21【答案】 【解析】解:()因为x1,1,则2+x1,3,由已知,有对任意的x1,1,f(x)0恒成立,任意的x1,3,f(x)0恒成立,故f(1)=0,即1为函数函数f(x)的一个零点由韦达定理,可得函数f(x)的另一个零点,又由任意的x1,3,f(x)0恒成立,1,31,c,即c3()函数f(x)=x2+bx+c对任意的x1,x21,1,有|f(x1)f(x2)|4恒成立,即f(x)maxf(x)min4,记f(x)maxf(x)min=M,则M4当|1,即|b|2时,M=|f(1)f(1)|=|2b|4,与M4矛盾;当|1,即|b|2时,M=maxf(1),f(1)f()=f()=(1+)24,解得:|b|2,即2b2,综上,b的取值范围为2b2【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键22【答案】 【解析】()证明:取CD的中点E,连接PE、EM、EAPCD为正三角形PECD,PE=PDsinPDE=2sin60=平面PCD平面ABCDPE平面ABCD四边形ABCD是矩形ADE、ECM、ABM均为直角三角形由勾股定理得EM=,AM=,AE=3EM2+AM2=AE2,AME=90AMPM()解:设D点到平面PAM的距离为d,连接DM,则VPADM=VDPAM而在RtPEM中,由勾股定理得PM=,即点D到平面PAM的距离为23【答案】 【解析】()证明:数列an满足a1=1,an+1=(nN*),nan=3(n+1)an+4n+6,两边同除n(n+1)得,即,也即,又a1=1,数列+是等比数列是以1为首项,3为公比的等比数列()()证明:由()得, =3n1,原不等式即为:,先用数学归纳法证明不等式:当n2时,证明过程如下:当n=2时,左边=,不等式成立假设n=k时,不等式成立,即,则n=k+1时,左边=+=,当n=k+1时,不等式也成立因此,当n2时,当n2时,当n2时, ,又当n=1时,左边=,不等式成立故bn+1+bn+2+b2n()证明:由(i)得,Sn=1+,当n2, =(1+)2(1+)2=2,=2,将上面式子累加得,又=1=1,即2(),当n2时,Sn22(+)【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论