西区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
西区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
西区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
西区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
西区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 将n2个正整数1、2、3、n2(n2)任意排成n行n列的数表对于某一个数表,计算某行或某列中的任意两个数a、b(ab)的比值,称这些比值中的最小值为这个数表的“特征值”当n=2时,数表的所有可能的“特征值”的最大值为( )ABC2D32 已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D3 命题:“xR,x2x+20”的否定是( )AxR,x2x+20BxR,x2x+20CxR,x2x+20DxR,x2x+204 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的可以是( )Ai4?Bi5?Ci6?Di7?5 2sin 80的值为( )A1 B1C2 D26 已知函数f(x)=x3+(1b)x2a(b3)x+b2的图象过原点,且在原点处的切线斜率是3,则不等式组所确定的平面区域在x2+y2=4内的面积为( )ABCD27 若全集U=1,0,1,2,P=xZ|x22,则UP=( )A2B0,2C1,2D1,0,28 已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为( )AMNB(UM)NCM(UN)D(UM)(UN)9 已知,则fff(2)的值为( )A0B2C4D810设Sn为等比数列an的前n项和,若a1=1,公比q=2,Sk+2Sk=48,则k等于( )A7B6C5D411下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤12已知,其中i为虚数单位,则a+b=( )A1B1C2D3二、填空题13已知数列an中,a1=1,an+1=an+2n,则数列的通项an=14给出下列命题:存在实数,使函数是偶函数是函数的一条对称轴方程若、是第一象限的角,且,则sinsin其中正确命题的序号是15设函数有两个不同的极值点,且对不等式恒成立,则实数的取值范围是 16已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_(单位:)17命题“,”的否定是 18椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为三、解答题19已知f(x)=x3+3ax2+bx在x=1时有极值为0(1)求常数 a,b的值; (2)求f(x)在2,的最值20(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21若数列an的前n项和为Sn,点(an,Sn)在y=x的图象上(nN*),()求数列an的通项公式;()若c1=0,且对任意正整数n都有,求证:对任意正整数n2,总有22已知函数f(x)=2|x2|+ax(xR)(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)2存在零点,求a的取值范围23在平面直角坐标系xOy中己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是=4(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求AOB的值 24已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围西区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为故选:B【点评】题考查类比推理和归纳推理,属基础题2 【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C3 【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“xR,x2x+20”的否定是xR,x2x+20故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查4 【答案】 C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的可以是i6?故选:C【点评】本小题主要考查循环结构、数列等基础知识根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查5 【答案】【解析】解析:选A.2 sin 802cos 101,选A.6 【答案】 B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2则f(x)=x3x2+ax,函数的导数f(x)=x22x+a,因为原点处的切线斜率是3,即f(0)=3,所以f(0)=a=3,故a=3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求kOB=,kOA=,tanBOA=1,BOA=,扇形的圆心角为,扇形的面积是圆的面积的八分之一,圆x2+y2=4在区域D内的面积为4=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键7 【答案】A【解析】解:x22xP=xZ|x22=x|x,xZ|=1,0,1,又全集U=1,0,1,2,UP=2故选:A8 【答案】B【解析】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题9 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C10【答案】D【解析】解:由题意,Sk+2Sk=,即32k=48,2k=16,k=4故选:D【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题11【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题12【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题二、填空题13【答案】2n1 【解析】解:a1=1,an+1=an+2n,a2a1=2,a3a2=22,anan1=2n1,相加得:ana1=2+22+23+2+2n1,an=2n1,故答案为:2n1,14【答案】 【解析】解:sincos=sin2,存在实数,使错误,故错误,函数=cosx是偶函数,故正确,当时, =cos(2+)=cos=1是函数的最小值,则是函数的一条对称轴方程,故正确,当=,=,满足、是第一象限的角,且,但sin=sin,即sinsin不成立,故错误,故答案为:【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力15【答案】【解析】试题分析:因为,故得不等式,即,由于,令得方程,因 , 故,代入前面不等式,并化简得,解不等式得或,因此, 当或时, 不等式成立,故答案为. 考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.11116【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。所以故答案为:17【答案】,【解析】试题分析:“,”的否定是,考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;对原命题的结论进行否定.(2)判定全称命题“xM,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M中的一个特殊值x0,使p(x0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个xx0,使p(x0)成立即可,否则就是假命题.18【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍三、解答题19【答案】 【解析】解:(1)f(x)=x3+3ax2+bx,f(x)=3x2+6ax+b,又f(x)在x=1时有极值0,f(1)=0且f(1)=0,即36a+b=0且1+3ab=0,解得:a=,b=1 经检验,合题意(2)由(1)得f(x)=3x2+4x+1,令f(x)=0得x=或x=1,又f(2)=2,f()=,f(1)=0,f()=,f(x)max=0,f(x)min=220【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)21【答案】 【解析】(I)解:点(an,Sn)在y=x的图象上(nN*),当n2时,化为,当n=1时,解得a1=(2)证明:对任意正整数n都有=2n+1,cn=(cncn1)+(cn1cn2)+(c2c1)+c1=(2n1)+(2n3)+3=(n+1)(n1)当n2时, =+=,又=【点评】本题考查了等比数列的通项公式与等差数列的前n项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题22【答案】 【解析】解:(1)当a=1时,f(x)=2|x2|+x=(2分)所以,f(x)在(,2)递减,在2,+)递增,故最小值为f(2)=2; (4分)(2)f(x)=,(6分)要使函数f(x)有最小值,需,2a2,(8分)故a的取值范围为2,2(9分)(3)sinx1,1,f(sinx)=(a2)sinx+4,“h(x)=f(sinx)2=(a2)sinx+2存在零点”等价于“方程(a2)sinx+2=0有解”,亦即有解,(11分)解得a0或a4,(13分)a的取值范围为(,04,+)(14分)【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键23【答案】 【解析】解:(1)直线l的参数方程为(t为参数),直线l的普通方程为曲线C的极坐标方程是=4,2=16,曲线C的直角坐标系方程为x2+y2=16(2)C的圆心C(0,0)到直线l: +y4=0的距离:d=2,cos,0, 24【答案】 【解析】解:(1)函数f(x)的定义域为(0,+),f(x)=k=0,x=,由ln1+1=0,可得k=1;(2)当k0时,f(x)=k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论