金湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
金湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
金湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
金湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
金湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

金湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若变量满足约束条件,则目标函数的最小值为( )A-5 B-4 C.-2 D32 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD3 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )2A B C D【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.4 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体积为,多面体的体积为,则( )1111A B C D不是定值,随点的变化而变化5 设复数(是虚数单位),则复数( )A. B. C. D. 【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力6 已知向量与的夹角为60,|=2,|=6,则2在方向上的投影为( )A1B2C3D47 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队首发要求每个班至少1人,至多2人,则首发方案数为( )A720B270C390D3008 如图,在正方体中,是侧面内一动点,若到直线与直线的距离相等,则动点的轨迹所在的曲线是( ) A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.9 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D3010一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A8cm2B12cm2C16cm2D20cm211某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111A B C D12已知命题p:“1,e,alnx”,命题q:“xR,x24x+a=0”若“pq”是真命题,则实数a的取值范围是( )A(1,4B(0,1C1,1D(4,+)二、填空题13如图,ABC是直角三角形,ACB=90,PA平面ABC,此图形中有个直角三角形14长方体中,对角线与棱、所成角分别为、,则 15双曲线x2my2=1(m0)的实轴长是虚轴长的2倍,则m的值为16某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.17将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax22bx+1在(,2上为减函数的概率是18已知函数f(x)=恰有两个零点,则a的取值范围是三、解答题19圆锥底面半径为,高为,其中有一个内接正方体,求这个内接正方体的棱长20如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 21等比数列an的各项均为正数,且2a1+3a2=1,a32=9a2a6,()求数列an的通项公式;()设bn=log3a1+log3a2+log3an,求数列的前n项和 22在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题答题终止后,获得的总分决定获奖的等次若甲是被抽到的答题同学,且假设甲答对问题的概率分别为()记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;()你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由23如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)()求四棱锥CFDEO的体积()如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE平面CDO?若存在,请加以证明;若不存在,请说明理由24已知椭圆E: =1(ab0)的焦距为2,且该椭圆经过点()求椭圆E的方程;()经过点P(2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值金湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系,直线系在可行域内的两个临界点分别为和,当直线过点时,当直线过点时,即的取值范围为,所以的最小值为.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.2 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题3 【答案】4 【答案】B【解析】考点:棱柱、棱锥、棱台的体积5 【答案】A【解析】6 【答案】A【解析】解:向量与的夹角为60,|=2,|=6,(2)=2=22262cos60=2,2在方向上的投影为=故选:A【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目7 【答案】C 解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: +=390故选:C8 【答案】D. 第卷(共110分)9 【答案】D【解析】解:,B=45根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题10【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4R2=12故选B11【答案】【解析】试题分析:分段间隔为,故选D.考点:系统抽样12【答案】A【解析】解:若命题p:“1,e,alnx,为真命题,则alne=1,若命题q:“xR,x24x+a=0”为真命题,则=164a0,解得a4,若命题“pq”为真命题,则p,q都是真命题,则,解得:1a4故实数a的取值范围为(1,4故选:A【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键二、填空题13【答案】4 【解析】解:由PA平面ABC,则PAC,PAB是直角三角形,又由已知ABC是直角三角形,ACB=90所以BCAC,从而易得BC平面PAC,所以BCPC,所以PCB也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键14【答案】【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:.考点:直线与直线所成的角【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键15【答案】4 【解析】解:双曲线x2my2=1化为x2=1,a2=1,b2=,实轴长是虚轴长的2倍,2a=22b,化为a2=4b2,即1=,解得m=4故答案为:4【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键16【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.17【答案】 【解析】解:由题意,函数y=ax22bx+1在(,2上为减函数满足条件第一次朝上一面的点数为a,第二次朝上一面的点数为b,a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种(a,b)的取值共36种情况所求概率为=故答案为:18【答案】(3,0) 【解析】解:由题意,a0时,x0,y=2x3ax21,y=6x22ax0恒成立,f(x)在(0,+)上至多一个零点;x0,函数y=|x3|+a无零点,a0,不符合题意;3a0时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上无零点,符合题意;a=3时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上有零点1,不符合题意;a3时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上有两个零点,不符合题意;综上所述,a的取值范围是(3,0)故答案为(3,0)三、解答题19【答案】【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可试题解析:过圆锥的顶点和正方体底面的一条对角线作圆锥的截面,得圆锥的轴截面,正方体对角面,如图所示设正方体棱长为,则,作于,则,即,即内接正方体棱长为考点:简单组合体的结构特征20【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NEMEAB,ABCD,MECD又NEOC,平面MNE平面OCDMN平面OCD(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作APCD于P,连接MPOA平面ABCD,CDMP,所以AB与MD所成角的大小为(3)AB平面OCD,点A和点B到平面OCD的距离相等,连接OP,过点A作AQOP于点Q,APCD,OACD,CD平面OAP,AQCD又AQOP,AQ平面OCD,线段AQ的长就是点A到平面OCD的距离,所以点B到平面OCD的距离为方法二(向量法)作APCD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),O(0,0,2),M(0,0,1),(1),设平面OCD的法向量为n=(x,y,z),则=0, =0即取,解得=(,1)(0,4,)=0,MN平面OCD(2)设AB与MD所成的角为,AB与MD所成角的大小为(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d=所以点B到平面OCD的距离为【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力21【答案】【解析】解:()设数列an的公比为q,由a32=9a2a6得a32=9a42,所以q2=由条件可知各项均为正数,故q=由2a1+3a2=1得2a1+3a1q=1,所以a1=故数列an的通项式为an=()bn=+=(1+2+n)=,故=2()则+=2=,所以数列的前n项和为【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题22【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】()的可能取值为,分布列为:()设先回答问题,再回答问题得分为随机变量,则的可能取值为,分布列为:应先回答所得分的期望值较高23【答案】 【解析】解:()如图1,弦CD垂直平分半径OA,半径为2,CF=DF,OF=,在RtCOF中有COF=60,CF=DF=,CE为直径,DECD,OFDE,DE=2OF=2,图2中,平面ACB平面ADE,平面ACB平面ADE=AB,又CFAB,CF平面ACB,CF平面ADE,则CF是四棱锥CFDEO的高,()在劣弧BC上是存在一点P(劣弧BC的中点),使得PE平面CDO证明:分别连接PE,CP,OP,点P为劣弧BC弧的中点,COF=60,COP=60,则COP为等边三角形,CPAB,且,又DEAB且DE=,CPDE且CP=DE,四边形CDEP为平行四边形,PECD,又PE面CDO,CD面CDO,PE平面CDO【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论