




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
兰坪白族普米族自治县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30B50C75D1502 已知lga+lgb=0,函数f(x)=ax与函数g(x)=logbx的图象可能是( )ABCD3 已知集合,则下列关系式错误的是( )A B C D4 已知A=4,2a1,a2,B=a5,1a,9,且AB=9,则a的值是( )Aa=3Ba=3Ca=3Da=5或a=35 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行6 已知集合A=x|1x3,B=x|0xa,若AB,则实数a的范围是( )A3,+)B(3,+)C,3D,3)7 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan358 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD9 已知定义在R上的可导函数y=f(x)是偶函数,且满足xf(x)0, =0,则满足的x的范围为( )A(,)(2,+)B(,1)(1,2)C(,1)(2,+)D(0,)(2,+)10已知复数z满足zi=2i,i为虚数单位,则z=( )A12iB1+2iC12iD1+2i11数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D112(文科)要得到的图象,只需将函数的图象( )A向左平移1个单位 B向右平移1个单位 C向上平移1个单位 D向下平移1个单位二、填空题13在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=14log3+lg25+lg47(9.8)0=15用“”或“”号填空:30.830.716【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为_17在中,为的中点,则的长为_.18直线2x+3y+6=0与坐标轴所围成的三角形的面积为三、解答题19(本题满分12分)已知数列的前项和为,且,().(1)求数列的通项公式;(2)记,是数列的前项和,求.【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前项和.重点突出对运算及化归能力的考查,属于中档难度.20已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1)处的切线方程为y=2(I)求a、b的值;()当x1时,不等式f(x)恒成立,求实数k的取值范围 21已知函数f(x)=log2(m+)(mR,且m0)(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+)上单调递增,求m的取值范围 22(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)求曲线上任意一点到直线的距离的最大值.23已知函数,且()求的解析式;()若对于任意,都有,求的最小值;()证明:函数的图象在直线的下方24已知椭圆C1: +x2=1(a1)与抛物线C:x2=4y有相同焦点F1()求椭圆C1的标准方程;()已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当OBC面积最大时,求直线l的方程兰坪白族普米族自治县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:该几何体是四棱锥,其底面面积S=56=30,高h=5,则其体积V=Sh=305=50故选B2 【答案】B【解析】解:lga+lgb=0ab=1则b=从而g(x)=logbx=logax,f(x)=ax与函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B3 【答案】A 【解析】试题分析:因为 ,而,即B、C正确,又因为且,所以,即D正确,故选A. 1考点:集合与元素的关系.4 【答案】B【解析】解:A=4,2a1,a2,B=a5,1a,9,且AB=9,2a1=9或a2=9,当2a1=9时,a=5,AB=4,9,不符合题意;当a2=9时,a=3,若a=3,集合B违背互异性;a=3故选:B【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题5 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况6 【答案】B【解析】解:集合A=x|1x3,B=x|0xa,若AB,则a3,故选:B【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题7 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题8 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题9 【答案】D【解析】解:当x0时,由xf(x)0,得f(x)0,即此时函数单调递减,函数f(x)是偶函数,不等式等价为f(|),即|,即或,解得0x或x2,故x的取值范围是(0,)(2,+)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键10【答案】A【解析】解:由zi=2i得,故选A11【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D12【答案】C【解析】试题分析:,故向上平移个单位.考点:图象平移 二、填空题13【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题14【答案】 【解析】解:原式=+lg10021=+221=,故选:【点评】本题考查了对数的运算性质,属于基础题15【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题16【答案】【解析】17【答案】【解析】 考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).18【答案】3 【解析】解:把x=0代入2x+3y+6=0可得y=2,把y=0代入2x+3y+6=0可得x=3,直线与坐标轴的交点为(0,2)和(3,0),故三角形的面积S=23=3,故答案为:3【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题三、解答题19【答案】【解析】(1)当时,;1分当时,当时,整理得.3分数列是以3为首项,公比为3的等比数列.数列的通项公式为.5分20【答案】 【解析】解:(I)函数f(x)=alnx+的导数为f(x)=,且直线y=2的斜率为0,又过点(1,2),f(1)=2b=2,f(1)=ab=0,解得a=b=1(II)当x1时,不等式f(x),即为(x1)lnx+(xk)lnx,即(k1)lnx+0令g(x)=(k1)lnx+,g(x)=+1+=,令m(x)=x2+(k1)x+1,当1即k1时,m(x)在(1,+)单调递增且m(1)0,所以当x1时,g(x)0,g(x)在(1,+)单调递增,则g(x)g(1)=0即f(x)恒成立当1即k1时,m(x)在上(1,)上单调递减,且m(1)0,故当x(1,)时,m(x)0即g(x)0,所以函数g(x)在(1,)单调递减,当x(1,)时,g(x)0与题设矛盾,综上可得k的取值范围为1,+) 21【答案】【解析】解:(1)由m+0,(x1)(mx1)0,m0,(x1)(x)0,若1,即0m1时,x(,1)(,+);若=1,即m=1时,x(,1)(1,+);若1,即m1时,x(,)(1,+)(2)若函数f(x)在(4,+)上单调递增,则函数g(x)=m+在(4,+)上单调递增且恒正所以,解得:【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档22【答案】(1)参数方程为,;(2).【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,所以参数方程为,直线的普通方程为.(2)曲线上任意一点到直线的距离为,所以曲线上任意一点到直线的距离的最大值为.考点:1.极坐标方程;2.参数方程.23【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】()对求导,得,所以,解得,所以()由,得,因为,所以对于任意,都有设,则令,解得当x变化时,与的变化情况如下表:所以当时,因为对于任意,都有成立,所以所以的最小值为()证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证由(),得,即(当且仅当时等号成立)所以只要证明当时,即可设,所以,令,解得由,得,所以在上为增函数所以,即所以故函数的图象在直线的下方24【答案】 【解析】解:()抛物线x2=4y的焦点为F1(0,1),c=1,又b2=1,椭圆方程为: +x2=1 ()F2(0,1),由已知可知直线l1的斜率必存在,设直线l1:y=kx1由消去y并化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保育指南考试题及答案
- 保安条例考试题及答案
- 班级管家考试题及答案
- copd的考试题及答案
- 施工原始记录管理制度
- 中医药公司经济管理制度
- 无人值守网吧管理制度
- 厂内叉车装载机管理制度
- 安全员机械设备管理制度
- 大润发门店品类管理制度
- 新高考数学题型全归纳之排列组合专题20定序问题(原卷版+解析)
- TQGCML 3946-2024 柴油发电机组维护保养规范
- 注水泵工(中级)技能鉴定理论考试题及答案
- 2023春国开精益生产终考题库及答案
- 仿古屋面工程施工方案
- 安徽省秸秆资源潜力和综合利用现状分析
- 老年高血压特点及临床诊治流程专家共识(2024版)解读
- 保洁服务 投标方案(技术标)
- 2024年国企采购商品房合同模板
- 土地流转补充合同协议书
- 新材料产业研发与产业化应用实施方案案
评论
0/150
提交评论