




已阅读5页,还剩60页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考专题突破三 高考中的数列问题,考点自测,课时作业,题型分类 深度剖析,内容索引,考点自测,1.(2016广州模拟)数列an是公差不为0的等差数列,且a1,a3,a7为等比数列bn中连续的三项,则数列bn的公比为,答案,解析,答案,解析,设等差数列an的首项为a1,公差为d.,a55,S515,,ana1(n1)dn.,3.已知数列an满足a11,an1an2n(nN),Sn是数列an的前n项和,则S2 016等于 A.22 0161 B.321 0083 C.321 0081 D.322 0162,答案,解析,依题意得anan12n,an1an22n1,,数列a1,a3,a5,a2n1,是以a11为首项,2为公比的等比数列; 数列a2,a4,a6,a2n,是以a22为首项,2为公比的等比数列, 于是有S2 016(a1a3a5a2 015)(a2a4a6a2 016),321 0083,故选B.,4.(2015课标全国)设Sn是数列an的前n项和,且a11,an1SnSn1,则Sn_.,答案,解析,由题意,得S1a11,又由an1SnSn1,得Sn1SnSnSn1,,答案,解析,4,an2an1,又a11, an是以1为首项,以2为公比的等比数列, an(2)n1,,由1Sk9,得4(2)k28, 又kN,k4.,题型分类 深度剖析,例1 (2016四川)已知数列an的首项为1,Sn为数列an的前n 项和,Sn1qSn1,其中q0,nN. (1)若a2,a3,a2a3成等差数列,求数列an的通项公式;,题型一 等差数列、等比数列的综合问题,解答,由已知,Sn1qSn1,得Sn2qSn11,两式相减得an2qan1,n1. 又由S2qS11得a2qa1,故an1qan对所有n1都成立.所以,数列an是首项为1,公比为q的等比数列. 从而anqn1.由a2,a3,a2a3成等差数列,可得2a3a2a2a3,所以a32a2,故q2. 所以an2n1(nN).,解答,由(1)可知,anqn1,,n1q2q2(n1),等差数列、等比数列综合问题的解题策略 (1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序. (2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.,思维升华,跟踪训练1 在等差数列an中,a1030,a2050. (1)求数列an的通项公式;,解答,设数列an的公差为d,则ana1(n1)d,,(2)令bn ,证明:数列bn为等比数列;,证明,由(1),得bn 22n101022n4n,,所以bn是首项为4,公比为4的等比数列.,(3)求数列nbn的前n项和Tn.,解答,由nbnn4n, 得Tn14242n4n, 4Tn142(n1)4nn4n1, ,得3Tn4424nn4n1,题型二 数列的通项与求和,例2 已知数列an的前n项和为Sn,在数列bn中,b1a1,bnanan1(n2),且anSnn. (1)设cnan1,求证:cn是等比数列;,证明,anSnn, an1Sn1n1. ,得an1anan11, 2an1an1,2(an11)an1,,首项c1a11,又a1a11.,又cnan1,,解答,(2)求数列bn的通项公式.,当n2时,bnanan1,(1)一般求数列的通项往往要构造数列,此时要从证的结论出发,这是很重要的解题信息. (2)根据数列的特点选择合适的求和方法,常用的有错位相减法,分组求和法,裂项求和法等.,思维升华,跟踪训练2 已知数列an的前n项和为Sn,且a1 ,an1 an. (1)证明:数列 是等比数列;,证明,(2)求数列an的通项公式与前n项和Sn.,解答,题型三 数列与其他知识的交汇,解答,命题点1 数列与函数的交汇,f(x)2axb,由题意知b2n, 16n2a4nb0,,又f(x)x2n,,当n1时,a14也符合,,解答,Tnb1b2bn,命题点2 数列与不等式的交汇,由题意知,an是首项为1,公比为2的等比数列, ana12n12n1. Sn2n1. 设等差数列bn的公差为d,则b1a11,b413d7, d2,bn1(n1)22n1.,例4 数列an满足a11,an12an(nN),Sn为其前n项和.数列bn为等差数列,且满足b1a1,b4S3. (1)求数列an,bn的通项公式;,解答,证明,log2a2n2log222n12n1,,命题点3 数列应用题,例5 (2016长沙模拟)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元. (1)用d表示a1,a2,并写出an1与an的关系式;,解答,由题意,得 a12 000(150%)d3 000d,,(2)若公司希望经过m(m3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m表示).,解答,整理,得,由题意,得am4 000,,数列与其他知识交汇问题的常见类型及解题策略 (1)数列与函数的交汇问题 已知函数条件,解决数列问题,此类问题一般利用函数的性质、图像研究数列问题; 已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决.,思维升华,(2)数列与不等式的交汇问题 函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式; 放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; 比较方法:作差或者作商比较. (3)数列应用题 根据题意,确定数列模型; 准确求解模型; 问题作答,不要忽视问题的实际意义.,跟踪训练3 设nN,xn是曲线yx2n21在点(1,2)处的切线与x轴交点的横坐标. (1)求数列xn的通项公式;,解答,y(x2n21)(2n2)x2n1, 曲线yx2n21在点(1,2)处的切线斜率为2n2, 从而切线方程为y2(2n2)(x1).,证明,课时作业,1.(2016北京)已知an是等差数列,bn是等比数列,且b23,b39,a1b1,a14b4. (1)求an的通项公式;,解答,1,2,3,4,5,设数列an的公差为d,bn的公比为q,,bn的通项公式bnb1qn13n1, 又a1b11,a14b434127, 1(141)d27,解得d2. an的通项公式ana1(n1)d1(n1)22n1(n1,2,3,).,1,2,3,4,5,解答,(2)设cnanbn,求数列cn的前n项和.,设数列cn的前n项和为Sn. cnanbn2n13n1, Snc1c2c3cn 2113022131231322n13n1,1,2,3,4,5,2.(2016全国甲卷)等差数列an中,a3a44,a5a76. (1)求an的通项公式;,设数列an的首项为a1,公差为d,,1,2,3,4,5,解答,(2)设bnan,求数列bn的前10项和,其中x表示不超过x的最大整数,如0.90,2.62.,解答,1,2,3,4,5,所以数列bn的前10项和为 1322334224.,1,2,3,4,5,3.已知数列an的前n项和Sn2an2n1. (1)证明:数列 是等差数列;,证明,1,2,3,4,5,当n1时,S12a122,得a14. Sn2an2n1, 当n2时,Sn12an12n,两式相减,得 an2an2an12n,即an2an12n,,1,2,3,4,5,(2)若不等式2n2n3(5)an对任意nN恒成立,求的取值范围.,解答,1,2,3,4,5,1,2,3,4,5,即an(n1)2n.,1,2,3,4,5,4.已知正项数列an中,a11,点( ,an1)(nN)在函数yx21的图像上,数列bn的前n项和Sn2bn. (1)求数列an和bn的通项公式;,解答,1,2,3,4,5,an1an1,数列an是公差为1的等差数列. a11,an1(n1)1n, Sn2bn,Sn12bn1, 两式相减,得bn1bn1bn,,由S12b1,即b12b1,得b11.,1,2,3,4,5,解答,1,2,3,4,5,1,2,3,4,5,1,2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024学年南通市启东七年级语文上学期期中考试卷附答案解析
- 客服员工工作总结汇编15篇
- 陕西省咸阳市礼泉县2024-2025学年八年级下学期期末考试英语试题(含答案无听力原文及音频)
- 湖南省衡阳市耒阳市2024-2025学年七年级下学期数学期末考试卷(无答案)
- 绿色能源市场前瞻分析
- 广州市房屋租赁合同(15篇)
- 软件外包行业市场竞争分析
- 汉字人课件教学课件
- 汉中消防知识培训课件
- 混凝土浇筑后的空洞与气泡检测方案
- 智慧校园建设“十五五”发展规划
- 人工流产后避孕服务规范
- 环境、社会与公司治理(ESG)
- 学校食堂食材配送服务方案(肉类、粮油米面、蔬菜水果类)(技术标)
- 物理学与人类文明(绪论)课件
- 《圆的周长》说课ppt
- 2023年临沧市市级单位遴选(选调)考试题库及答案
- 2017版小学科学课程标准思维导图
- 第十一章-异常分娩-1产力异常
- 建设工程质量检测见证取样员手册
- 公司介绍-校园招聘-北汽
评论
0/150
提交评论