




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷巴林右旗第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD2 如图甲所示, 三棱锥 的高 ,分别在 和上,且,图乙的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是( ) A B C. D11113 设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为( )A12B10C8D24 已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力5 直线2x+y+7=0的倾斜角为()A锐角B直角C钝角D不存在6 已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)7 函数y=x+xlnx的单调递增区间是( )A(0,e2)B(e2,+)C(,e2)D(e2,+)8 下列正方体或四面体中,、分别是所在棱的中点,这四个点不共面的一个图形是( )9 若关于的不等式的解集为或,则的取值为( )A B C D10在定义域内既是奇函数又是减函数的是( )Ay=By=x+Cy=x|x|Dy=11ABC的内角A、B、C的对边分别为a、b、c已知a=,c=2,cosA=,则b=( )ABC2D312以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )ABCD二、填空题13设全集U=0,1,2,3,4,集合A=0,1,2,集合B=2,3,则(UA)B=14抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则外接圆的标准方程为_.15数据2,1,0,1,2的方差是16长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是17已知|=1,|=2,与的夹角为,那么|+|=18抛物线y2=8x上到顶点和准线距离相等的点的坐标为三、解答题19已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示()求椭圆E的方程;()判断ABCD能否为菱形,并说明理由()当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值20设函数f(x)=ax2+bx+c(a0)为奇函数,其图象在点(1,f(1)处的切线与直线x6y7=0垂直,导函数f(x)的最小值为12(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在1,3上的最大值和最小值21已知等差数列an中,a1=1,且a2+2,a3,a42成等比数列(1)求数列an的通项公式;(2)若bn=,求数列bn的前n项和Sn22已知在四棱锥PABCD中,底面ABCD是边长为4的正方形,PAD是正三角形,平面PAD平面ABCD,E、F、G分别是PA、PB、BC的中点(I)求证:EF平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小23全集U=R,若集合A=x|3x10,B=x|2x7,(1)求AB,(UA)(UB); (2)若集合C=x|xa,AC,求a的取值范围24已知函数f(x)=2|x2|+ax(xR)(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)2存在零点,求a的取值范围巴林右旗第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题2 【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题. 3 【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值104 【答案】D【解析】,故选D.5 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为,则tan=2,即可判断出结论【解答】解:设直线2x+y+7=0的倾斜角为,则tan=2,则为钝角故选:C6 【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用7 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得f(x)=lnx+2,令f(x)0,可得xe2,函数f(x)的单调增区间是(e2,+)故选B8 【答案】D【解析】考点:平面的基本公理与推论9 【答案】D【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选D.考点:不等式与方程的关系.10【答案】C【解析】解:A.在定义域内没有单调性,该选项错误;B.时,y=,x=1时,y=0;该函数在定义域内不是减函数,该选项错误;Cy=x|x|的定义域为R,且(x)|x|=x|x|=(x|x|);该函数为奇函数;该函数在0,+),(,0)上都是减函数,且02=02;该函数在定义域R上为减函数,该选项正确;D.;0+101;该函数在定义域R上不是减函数,该选项错误故选:C【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性11【答案】D【解析】解:a=,c=2,cosA=,由余弦定理可得:cosA=,整理可得:3b28b3=0,解得:b=3或(舍去)故选:D12【答案】D【解析】解:因为以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P=,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比二、填空题13【答案】2,3,4 【解析】解:全集U=0,1,2,3,4,集合A=0,1,2,CUA=3,4,又B=2,3,(CUA)B=2,3,4,故答案为:2,3,414【答案】或【解析】试题分析:由题意知,设,由,则切线方程为,代入得,则,可得,则外接圆以为直径,则或.故本题答案填或1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质15【答案】2 【解析】解:数据2,1,0,1,2,=,S2= (20)2+(10)2+(00)2+(10)2+(20)2=2,故答案为2;【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,xn的平均数,是一道基础题;16【答案】50 【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是: =50故答案为:50【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力17【答案】 【解析】解:|=1,|=2,与的夹角为,=1=1|+|=故答案为:【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题18【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题三、解答题19【答案】 【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3椭圆E的方程为=1(II)假设ABCD能为菱形,则OAOB,kOAkOB=1当ABx轴时,把x=1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时ABCD不能为菱形当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=kOAkOB=,假设=1,化为k2=,因此平行四边形ABCD不可能是菱形综上可得:平行四边形ABCD不可能是菱形(III)当ABx轴时,由(II)可得:|AD|=2,|AB|=3,此时ABCD为矩形,S矩形ABCD=6当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=|AB|=点O到直线AB的距离d=S平行四边形ABCD=4SOAB=2=则S2=36,S6因此当平行四边形ABCD为矩形面积取得最大值620【答案】 【解析】解:(1)f(x)为奇函数,f(x)=f(x),即ax3bx+c=ax3bxc,c=0f(x)=3ax2+b的最小值为12,b=12又直线x6y7=0的斜率为,则f(1)=3a+b=6,得a=2,a=2,b=12,c=0;(2)由(1)知f(x)=2x312x,f(x)=6x212=6(x+)(x),列表如下: x (,) (,) (,+) f(x)+ 0 0+ f(x) 增 极大 减 极小 增所以函数f(x)的单调增区间是(,)和(,+)f(1)=10,f()=8,f(3)=18,f(x)在1,3上的最大值是f(3)=18,最小值是f()=821【答案】 【解析】解:(1)由a2+2,a3,a42成等比数列,=(a2+2)(a42),(1+2d)2=(3+d)(1+3d),d24d+4=0,解得:d=2,an=1+2(n1)=2n1,数列an的通项公式an=2n1;(2)bn=(),Sn= (1)+()+(),=(1),=,数列bn的前n项和Sn,Sn=22【答案】 【解析】解:(I)证明:平面PAD平面ABCD,ABAD,AB平面PAD,E、F为PA、PB的中点,EFAB,EF平面PAD; (II)解:过P作AD的垂线,垂足为O,平面PAD平面ABCD,则PO平面ABCD取AO中点M,连OG,EO,EM,EFABOG,OG即为面EFG与面ABCD的交线又EMOP,则EM平面ABCD且OGAO,故OGEOEOM 即为所求 在RTEOM中,EM=OM=1tanEOM=,故EOM=60平面EFG与平面ABCD所成锐二面角的大小是60【点评】本题主要考察直线与平面垂直的判定以及二面角的求法解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角23【答案】 【解析】解:(1)A=x|3x10,B=x|2x7,AB=3,7;AB=(2,10);(CUA)(CUB)=(,3)10,+);(2)集合C=x|xa,若AC,则a3,即a的取值范围是a|a324【答案】 【解析】解:(1)当a=1时,f(x)=2|x2|+x=(2分)所以,f(x)在(,2)递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江西吉安市泰和县上圯水厂面向社会招聘5人考前自测高频考点模拟试题及答案详解(必刷)
- 2025河南郑州联勤保障中心二季度社会人才招聘132人考前自测高频考点模拟试题及答案详解(夺冠)
- 2025年国家知识产权局知识产权检索咨询中心社会招聘(16人)考前自测高频考点模拟试题及完整答案详解
- 2025快递站点租赁合同
- 2025广东汕头市潮阳区教育局属下学校外出招聘硕士研究生18人模拟试卷及答案详解(新)
- 2025年阜阳颍州区选调区内乡镇在编在岗教师60人模拟试卷附答案详解(典型题)
- 2025年安徽艺术学院高层次人才招聘30人考前自测高频考点模拟试题有完整答案详解
- 2025年临沂市罗庄区兴罗资本投资有限公司公开招聘职业经理人模拟试卷及完整答案详解一套
- 2025北京大学未来技术学院招聘1名劳动合同制工作人员模拟试卷及答案详解(名校卷)
- 2025湖南邵阳市洞口县教育局所属事业单位招聘39人模拟试卷带答案详解
- 头道汤的课件
- 护肤品分析与讲解
- 2025年中国药典培训试题及答案
- Q-JJJ 9002-2025 铁路建设项目安全穿透式管理实施指南
- 2025年新闻记者从业资格证考试题库(附含答案)
- 制药设备改造管理制度
- DB31/T 1013-2016城市轨道交通地下车站环境质量要求
- 【义乌小商品市场出口贸易的现状与对策探析8100字(论文)】
- 沟通的艺术智慧树知到期末考试答案章节答案2024年湖南师范大学
- 城轨专业职业生涯规划
- 高海拔地区常见疾病与适应措施
评论
0/150
提交评论