



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层作业(十九)对数函数的图象及性质(建议用时:40分钟)学业达标练一、选择题1函数y的定义域为()A(,2)B(2,)C(2,3)(3,) D(2,4)(4,)C要使函数有意义,则解得x2且x3,故选C.2若函数yf(x)是函数y3x的反函数,则f的值为() 【导学号:37102289】Alog23 Blog32C. D.B由题意可知f(x)log3x,所以flog3log32,故选B.3如图223,若C1,C2分别为函数ylogax和ylogbx的图象,则()图223A0ab1B0bab1Dba1B作直线y1,则直线与C1,C2的交点的横坐标分别为a,b,易知0ba1.4函数y|lg(x1)|的图象是() 【导学号:37102290】ABCDAy|lg(x1)|0,且当x0时,y0,故选A.5函数f(x)loga(x2)(0a0,且a1),则3loga8,a,f(x)logx,f(2)log(2)log2(2).三、解答题9若函数yloga(xa)(a0且a1)的图象过点(1,0)(1)求a的值;(2)求函数的定义域解(1)将(1,0)代入yloga(xa)(a0,a1)中,有0loga(1a),则1a1,所以a2.(2)由(1)知ylog2(x2),由x20,解得x2,所以函数的定义域为x|x210若函数f(x)为定义在R上的奇函数,且x(0,)时,f(x)lg(x1),求f(x)的表达式,并画出大致图象. 【导学号:37102293】解f(x)为R上的奇函数,f(0)0.又当x(,0)时,x(0,),f(x)lg(1x)又f(x)f(x),f(x)lg(1x),f(x)的解析式为f(x)f(x)的大致图象如图所示冲A挑战练1函数yln(1x)的定义域为()A(0,1)B0,1)C(0,1 D0,1B由得0x0时,f(x)log2x,由f(a)得log2a,即a.当x0时,f(x)2x,由f(a)得2a,a1.综上a1或.4设函数f(x)logax(a0,且a1),若f(x1x2x2 017)8,则f(x)f(x)f(x)的值等于_. 【导学号:37102295】16f(x)f(x)f(x)f(x)logaxlogaxlogaxlogaxloga(x1x2x3x2 017)22loga(x1x2x3x2 017)2816.5若不等式x2logmx0在内恒成立,求实数m的取值范围解由x2logmx0,得x2logmx,在同一坐标系中作yx2和ylogmx的草图,如图所示要使x2logmx在内恒成立,只要ylogmx在内的图象在yx2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025项目汕尾职业技术学院科研项目任务书合同书
- 2025北京华商电力产业发展有限公司高校毕业生招聘(第三批)模拟试卷及答案详解(夺冠系列)
- 2025湖南郴州市嘉禾县事业单位第一批公开招聘引进高层次人才和急需紧缺人才13人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025员工合同范本模板
- 2025年人工费合同5篇
- 安全监测考试题库及答案
- 中医白疕考试题库及答案
- 评审专家考试题库及答案
- 餐饮组长考试题库及答案
- 不签合同被辞退怎么赔偿5篇
- 四川省成都市外国语学校2024-2025学年高一上学期10月月考英语试题含解析
- 财务共享:理论与实务(第2版·立体化数字教材版)讲义 10第十章 费用报销模块
- 主动脉瘤护理措施
- 2025-2030中国汽车电源管理集成电路行业市场发展趋势与前景展望战略研究报告
- 2023年中国工商银行秋季招聘考试真题及答案
- 医用物理学考试题及答案
- 足球运动康复训练计划
- 农村养殖技术培训
- 【课件】虚拟现实技术在《现代物流管理》教学中的应用
- 精细化工产业创新发展实施方案(2025-2027年)
- 面试各种测试题目及答案
评论
0/150
提交评论