




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八节函数与方程考纲传真结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数1函数的零点(1)定义:函数yf(x)的图像与横轴的交点的横坐标称为这个函数的零点(2)函数零点与方程根的关系:方程f(x)0有实根函数yf(x)的图像与x轴有交点函数yf(x)有零点(3)零点存在性定理若函数yf(x)在闭区间a,b上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)f(b)0,则在区间(a,b)内,函数yf(x)至少有一个零点,即相应方程f(x)0在区间(a,b)内至少有一个实数解(4)二分法:对于在区间a,b上连续不断且f(a)f(b)0的函数yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫作二分法2二次函数yax2bxc(a0)的图像与零点的关系b24ac000二次函数yax2bxc(a0)的图像与x轴的交点(x1,0),(x1,0)(x2,0)无交点零点个数2101f(a)f(b)0是连续函数yf(x)在闭区间a,b上有零点的充分不必要条件2若函数f(x)在a,b上是单调函数,且f(x)的图像连续不断,则f(a)f(b)0函数f(x)在区间a,b上只有一个零点基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)函数的零点就是函数的图像与x轴的交点()(2)函数yf(x)在区间(a,b)内有零点(函数图像连续不断),则f(a)f(b)0. ()(3)若函数f(x)在(a,b)上单调且f(a)f(b)0,则函数f(x)在a,b上有且只有一个零点()(4)二次函数yax2bxc在b24ac0时没有零点()答案(1)(2)(3)(4)2(教材改编)函数f(x)ln x2x6的零点所在的区间是()A(0,1)B(1,2)C(2,3) D(3,4)C由题意得f(1)ln 12640,f(2)ln 246ln 220,f(3)ln 366ln 30,f(4)ln 486ln 420,f(x)的零点所在的区间为(2,3)3(教材改编)已知函数yf(x)的图像是连续不断的曲线,且有如下的对应值表:x123456y124.4337424.536.7123.6则函数yf(x)在区间1,6上的零点至少有()A2个 B3个C4个 D5个Bf(2)f(3)0,f(3)f(4)0,f(4)f(5)0,故函数f(x)在区间1,6内至少有3个零点4函数f(x)xx的零点有_个1如图所示,函数f(x)xx的零点有1个5函数f(x)ax12a在区间(1,1)上存在一个零点,则实数a的取值范围是_函数f(x)的图像为直线,由题意可得f(1)f(1)0,(3a1)(1a)0,解得a1,实数a的取值范围是.判断函数零点所在的区间1函数f(x)ln x的零点所在的区间为()A(0,1)B(1,2)C(2,3) D(3,4)B由题意知函数f(x)是增函数,因为f(1)0,f(2)ln 2ln 2ln 0,所以函数f(x)的零点所在的区间是(1,2)故选B2若abc,则函数f(x)(xa)(xb)(xb)(xc)(xc)(xa)的两个零点分别位于区间()A(a,b)和(b,c)内B(,a)和(a,b)内C(b,c)和(c,)内D(,a)和(c,)内Aabc,f(a)(ab)(ac)0,f(b)(bc)(ba)0,f(c)(ca)(cb)0,由函数零点存在性判定定理可知:在区间(a,b)(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.3已知函数f(x)ln x2x6的零点在(kZ)内,那么k_.5f(x)20,x(0,),f(x)在x(0,)上递增,且fln 10,f(3)ln 30,f(x)的零点在内,则整数k5.规律方法判断函数零点所在区间的方法(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间上来判断.(2)利用零点存在性定理进行判断.(3)数形结合画出函数图像,通过观察图像与x轴在给定区间内是否有交点来判断.判断函数零点的个数【例1】(1)函数f(x)的零点个数为()A0 B1C2 D3(2)设函数f(x)是定义在R上的奇函数,当x0时,f(x)exx3,则f(x)的零点个数为()A1 B2C3 D4(1)D(2)C(1)依题意,在考虑x0时可以画出函数yln x与yx22x的图像(如图),可知两个函数的图像有两个交点,当x0时,函数f(x)2x1与x轴只有一个交点,综上,函数f(x)有3个零点故选D(2)因为函数f(x)是定义域为R的奇函数,所以f(0)0,即x0是函数f(x)的1个零点当x0时,令f(x)exx30,则exx3,分别画出函数yex和yx3的图像,如图所示,两函数图像有1个交点,所以函数f(x)有1个零点根据对称性知,当x0时,函数f(x)也有1个零点综上所述,f(x)的零点个数为3.规律方法函数零点个数的判断方法(1)直接求零点,令f(x)0,有几个解就有几个零点;(2)零点存在性定理,要求函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,再结合函数的图像与性质确定函数零点个数;(3)利用图像交点个数,作出两函数图像,观察其交点个数即得零点个数. (1)函数f(x)2x|log0.5 x|1的零点个数为()A1 B2C3 D4(2)已知函数f(x)若f(0)2,f(1)1,则函数g(x)f(x)x的零点个数为_(1)B(2)3(1)令f(x)2x|log0.5x|10,可得|log0.5x|x.设g(x)|log0.5x|,h(x)x.在同一坐标系下分别画出函数g(x),h(x)的图像,可以发现两个函数图像一定有2个交点,因此函数f(x)有2个零点故选B(2)依题意得由此解得由g(x)0得f(x)x0,该方程等价于或解得x2,解得x1或x2.因此,函数g(x)f(x)x的零点个数为3.函数零点的应用【例2】(1)设函数f(x)exx2,g(x)ln xx23.若实数a,b满足f(a)0,g(b)0,则()Ag(a)0f(b) Bf(b)0g(a)C0g(a)f(b) Df(b)g(a)0(2)已知函数f(x)其中m0.若存在实数b,使得关于x的方程f(x)b有三个不同的根,则m的取值范围是_(1)A(2)(3,)(1)f(x)exx2,f(x)ex10,则f(x)在R上为增函数,又f(0)e020,f(1)e10,且f(a)0,0a1.g(x)ln xx23,g(x)2x.当x(0,)时,g(x)0,g(x)在(0,)上为增函数,又g(1)ln 1220,g(2)ln 210,且g(b)0,1b2,ab,故选A.(2)画出f(x)的草图如图所示,若存在实数b,使得f(x)b有3个不同的根,则4mm2m,即m23m0,又m0,解得m3.规律方法已知函数有零点求参数取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. (1)已知函数f(x)exx,g(x)ln xx,h(x)ln x1的零点依次为a,b,c,则()Aabc BcbaCcab Dbac(2)函数f(x)2xa的一个零点在区间(1,2)内,则实数a的取值范围是()A(1,3) B(1,2)C(0,3) D(0,2)(1)A(2)C(1)在同一坐标系中,画出函数yex,yln x与yx,y1的图像如图所示由图可知abc,故选A.(2)函数f(x)2xa在区间(1,2)上递增,又函数f(x)2xa的一个零点在区间(1,2)内,则有f(1)f(2)0,(a)(41a)0,即a(a3)0,0a3.1(2018全国卷)已知函数f(x)g(x)f(x)xa.若g(x)存在2个零点,则a的取值范围是()A1,0)B0,)C1,) D1,)C函数g(x)f(x)xa存在2个零点,即关于x的方程f(x)xa有2个不同的实根,即函数f(x)的图像与直线yxa有2个交点,作出直线yxa与函数f(x)的图像,如图所示,由图可知,a1,解得a1,故选C.2(2017全国卷)已知函数f(x)x22xa(ex1ex1)有唯一零点,则a()A BC. D1C法一:f(x)x22xa(ex1ex1)(x1)2aex1e(x1)1,令tx1,则g(t)f(t1)t2a(etet)1.g(t)(t)2a(etet)1g(t),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 控制技术综合试题及答案
- 技术开发试题及答案
- 首尔兼职面试经典题库:各类职位的求职策略
- 游戏开发面试实战:经典游戏架构面试题目及答案
- 学校水电安全知识培训课件
- 卓越职场面试技巧大全全系列题目及答案
- 国金证券面试题库精粹:精英之路的关键一步
- 红十字面试常见问题及答案解析
- 10000培训知识点课件
- 学校全员消防知识培训课件
- 应聘个人简历标准版范文
- 全面深化信息安全培训提高医护人员的保护意识与能力水平
- 2025年全球邮轮旅游的复苏与创新探讨
- 代买保险合同协议书范文
- 19《一只窝囊的大老虎》 公开课一等奖创新教学设计
- 宕渣施工专项方案
- 学校食堂保洁服务方案(技术标)
- 兼职音乐教师合同范例
- 《妊娠合并阑尾炎》课件
- 21、学生饮用奶食品安全应急预案
- 特立帕肽治疗骨质疏松性骨折中国专家共识(2024版)解读
评论
0/150
提交评论