九年级下册《正切》教案_第1页
九年级下册《正切》教案_第2页
九年级下册《正切》教案_第3页
九年级下册《正切》教案_第4页
九年级下册《正切》教案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 9 九年级下册正切教案 本资料为 WoRD文档,请点击下载地址下载全文下载地址 九年级下册正切教案 学习目标 (一)知识与技能: 1理解并掌握正切的含义,并能够举例说明 ; 2会在直角三角形中求出某个锐角的正切值; 3了解锐角的正切值随锐角的增大而增大 (二)过程与方法: 经历操作、观察、思考、求解等过程,感受数形结合的思想方法,培养学生理性思维的习惯与方法 (三)情感态度价值观: 激发学生学习的积极性和主动性,引导学生自主探索、合作交流,培养创新意识 学习重点与难点 重点:理解正切的意义,会将某些实际问题转化为解直角三角形的问题 难点:理解直角三角形中锐角与两直角边比值之间一一对应的关系 学习过程 (一)合作探索 1.看一看、想一想 2 / 9 现在有 2 个木棒靠在墙上,一只蚂蚁想爬上木棒到上面去找食物,如果你是小蚂蚁,你会爬哪根木棒?为什么? 2.试一试、 改变木棒靠墙的位置,你能说出哪根木棒靠墙最陡吗?(今天老师没带量角器,只带了皮尺)皮尺能做什么?木棒的倾斜程度与木棒的 “ 高(宽) ” 有关系吗? 3.做一做、算一算 下列图形中哪个木棒放的最陡? 现在你会了几种方法描述木棒的倾斜程度? (角的大小和高宽之比 )它们 2 者之间是否也存在关系?(这个就是我们今天要学习的内容)为什么说图 1 和图 4 的木棒放的一样陡? 4 和 7 有什么关系,你能用学过的知识来说明吗?上图中还有放的一样陡的木棒吗? (二)形成概念 上面的木棒倾斜程度的研究都是在直角三角形模型中所以在 RtABc 中 ,锐角 A 的对边与邻边的比叫做 A 的正切 ,记作 tanA,即 你能写出 B 的正切吗? 3 / 9 (三)例题展示 1.根据下列 图中所给条件分别求出下列图中 A 、 B 的正切值。 2.在 RtABc 中 ,c=90, (1)Ac=2,AB=,求 tanB (2)AB=12,tanA=,求 Ac和 Bc. (3)A=30, 求 tanA (四)拓展提高 在上面的第( 3)题中,只知道 A=30 ,你能求 tanA的值吗?如果 A=15 呢? (五)巩固练习 1.在 RtABc 中 ,锐角 A的对边和邻边同时扩大 100倍 ,tanA的值() A.扩大 100倍 B.缩小 100倍 c.不变 D.不能确 定 2.已知 A,B 为锐角 (1)若 A=B, 则 tanAtanB;(2)若 tanA=tanB,则 AB. 3.如图,在在 RtABc 中, AcB=90 , cD是 AB边上的高,Ac=3,Bc=4; tanA= tanB= 4 / 9 tanAcD= ; (六)课堂小结 1.木棒的倾斜程度除了用坡角的大小来描述还可以用这个角的正切值的大小来说明; 2.A 的正切记作 tanA,习惯省去 的符号,在用 3 个字母表示一个锐角时, 的符号不能省; 是在直角三角形中定义的,它是一 个比值(直角边之比),无单位; 4.A 的越大, tanA 就越大; 5.角相等,正切值相等,反之亦然。 (七)课后巩固 1在直角坐标系中, ABc 的三个顶点的坐标分别为 A(4,1), B( 1, 3), c( 4,3),试求 tanB的值。 2.某楼梯的踏板宽为 30cm,一个台阶的高度为 15cm,求楼梯倾斜角的正切值。 教学设计和课后反思 “ 锐角三角函数 ” 是函数知识的延续,因此本章的学习就是在学生原有的学习基础上进一步丰富了学习内容、提升了学习能力。而正切是中学阶段遇到的第一个三 角函数,欲让学生感悟、经历、体验怎样引进锐角正切(新知的切入点)、怎样运用锐角正切(新知的生长点)、锐角正切可解决怎样5 / 9 的问题(新知的优越点),同时本节课的研究方式又直接关系到后继三角函数(正弦、余弦)的学习方式,因此本节内容无论是知识还是研究方式在教材中起到了承上启下的衔接作用 本课重点是正确理解正切的概念及意义,并能应用到解直角三角形中。难点:锐角正切概念的引进与理解,理解直角三角形中锐角与两直角边比值之间的一一对应关系,从而引入正切函数。 一 .引入的设计 在第一次的备课的引入: 1看一看、猜一 猜 喜欢运动吗?有喜欢爬上的吗? 观看山体图片说一说哪座山让你感觉更好爬?这和什么有关? 2.试一试、想一想 问题:下列图中的两个台阶哪个更陡?你主要依据什么? 设计意图:我想通过观察几幅山体的图片来问学生那个山更陡,为什么说它陡,然后再研究生活中的台阶,说明台阶的陡和坡角有关,然后让学生拿 2 根木棒做实验,比一比谁放得更陡,意图再探寻当坡角无法看出时怎么说明倾斜程度。 第二次备课的引入: 6 / 9 1看一看、想一想 现在有 2 个木棒靠在墙上,一只蚂蚁想爬上木棒到上面去找食物,如果你是小蚂蚁,你会爬哪根木棒?为什么? 2.试一试、 改变木棒靠墙的位置,你能说出哪根木棒靠墙最陡吗?(今天老师没带量角器,只带了皮尺)皮尺能做什么?木棒的倾斜程度与木棒的 “ 高(宽) ” 有关系吗? 设计意图:山体图片的引入有时候并不能直接让学生引入到“ 陡 ” 上,第二次备课一下子就把问题抛出来了,更加直接,课后想还可以把 “ 蚂蚁找食物 ” 换成 “ 汽车上坡 ” 。学生就更加清楚 “ 陡 ”“ 倾斜程度 ” 是和坡角有关系的,坡角越大越陡。然后再做实验改变木棒的靠墙的位 置,使学生产生疑问:当坡角无法看出时,怎么样比较倾斜程度。 二把比值和坡角的大小建立联系 下列图形中哪个木棒放的最陡? 学生在开始的研究中都知道木棒的倾斜程度和木棒顶端离地面的距离(高)以及底端离墙面的距离(宽)有关,出现上面的图片,让学生在比较 “ 陡 ” 的过程中形成了找高宽之比的方法。并知道了比值越大越陡。然后找出图 4 和图 7 问它们到底谁更陡?为什么说它们一样陡?(学生说比值相7 / 9 等)图中还有一样陡的木棒吗?我们开始研究 “ 陡 ” 是从坡角研究的,图 4 和图 7 的坡角一样吗?你能用学过的知识来证明吗?(相 似) 三 .形成概念 上面的木棒倾斜程度的研究都是在直角三角形模型中所以在 RtABc 中 ,锐角 A 的对边与邻边的比叫做 A 的正切 ,记作 tanA,即 你能写出 B 的正切吗? 四:例题 1.根据下列图中所给条件分别求出下列图中 A 、 B 的正切值。 设计意图: 第一题是直接运用 第二题在实际上课过程中可以应到学生计算 BcD 的正切值。(角相等,正切值相等) 2.在 RtABc 中 ,c=90, (1)Ac=2,AB=, 求 tanB(2)AB=12,tanA=, 求 Ac 和Bc.(3)A=30 求 tanA 设计意图: 8 / 9 对正切运用的进一步强化,第( 3)题中,如果 A=15 ,你能求 tanA 的值吗?这个时候学生的问题就产生了,引导学生测量边长,引出下图,理解直角三角形中锐角与两直角边比值之间的一一对应关系,让学生体会正切是一个函数。 课堂实践与原始构想之间的落差作为一种必然客观存在着。构想就是预设,就是作战方案的部署,是带理想化印迹的优化设定,是 “ 纸上谈兵 ” 。具体实施就是进入阵地进行 “ 真刀实枪 ” 地拼杀,时有不测,需要临阵不乱,洞察时势,灵活驾驭。 新课程一直致力于转变学生的学习方式的研究,着力培养学生的自主、探究、合作的精神,因此新课程背景下的备课理应在创造性的使用教材和培养学生的创新精神上要作较为深入的思考与积极的尝试。正切是中学阶段第一个遇到的三角函数,它是函数知识的延续,本节课的研究方式直接关系到后继三角函数的学习,在教材中起到了承上启下的作用。鉴于此,自然地过程就是如何在知识间的衔接处教学?提好的问题就是在学生的思维最近发展区处如何培养学生的自主创新能力和渗透重要的数学思想方法?这些问题是我教学过程中思考的内容。在上课结束后,我感觉很多 方面还不完美,没有达到本节课的实际效果。 1.重点就是就让学生正确理解正切的概念及意义,在引入中9 / 9 觉得有点生硬,没有从函数的角度着手。 2.在实际计算过程中多运用变形做的不够,如: 1.判断:Bc=ActanA() (还可以让小组编

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论