




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 13 平衡条件的应用 本资料为 WoRD文档,请点击下载地址下载全文下载地址 平衡条件的应用教案 一 .教学内容: 平衡条件的应用 二、教学目标: 掌握求解共点力平衡条件的应用问题的一般方法和步骤 教学过程 1.共点力平衡条件的应用 现实生活中,物体在力的作用下处于平衡状态的情况随处可见,站着的人在重力和地面支持力的作用下,处于静止平衡状态,这叫静态平衡;跳伞运动员在降落过程中,当其匀速降落时,他所受的重力与降落伞的拉力及空气阻力平衡,这是动态平衡。 有时,物体就整体而言并不处于 平衡状态,但它可以在某一方向上处于平衡状态。如在海面上加速行驶的快艇,在水平方向做变速运动,可是它在竖直方向上只受重力和浮力这一对平衡力作用,因此它在竖直方向上处于平衡状态。 2.依平衡条件列方程可对任一方向也可在某一方向 ( 1)在共点力作用下物体处于平衡状态,则物体所受合力为零,因此物体在任一方向上的合力都为零。 ( 2)如果物体只是在某一方向上处于平衡状态,则该方向2 / 13 上合力为零,因此可以在该方向上应用平衡条件列方程求解。 3.求解共点力作用下物体平衡的方法 ( 1)解三角形法:这种方法主要用来解决三 力平衡问题,是根据平衡条件并结合力的合成或分解的方法,把三个平衡力转化为三角形的三条边,然后通过解这个三角形求解平衡问题,解三角形多数情况是解直角三角形,如果力的三角形并不是直角三角形,能转化为直角三角形的尽量转化为直角三角形,如利用菱形的对角线相互垂直的特点就得到了直角三角形,确实不能转化为直角三角形时,可利用力的三角形与空间几何三角形的相似等规律求解。 ( 2)正交分解法:正交分解法在处理四力或四力以上的平衡问题时非常方便,将物体所受各个力均在两互相垂直的方向上分解,然后分别在这两个方向上列方程。此时平 衡条件可表示为 说明:应用正交分解法解题的优点: 将矢量运算转变为代数运算,使难度降低; 将求合力的复杂的解三角形问题,转化为正交分解后的直角三角形问题,使运算简便易行; 当所求问题有两个未知条件时,这种表达形式可列出两个方程,通过对方程组求解,使得求解更方便。 4.解共点力平衡问题的一般步骤 3 / 13 ( 1)选取研究对象。 ( 2)对所选取的研究对象进行受力分析,并画出受力图。 ( 3)对研究对象所受的力进行处理。一般情况下需要建立合适的直角坐标系,对各力按坐标轴进行正交分解。 ( 4)建立平衡方 程。若各力作用在同一直线上,可直接用的代数式列出方程;若几个力不在同一直线上,可用与联立列出方程组。 ( 5)对方程求解,必要时需对解进行讨论。 注意:建立直角坐标系时,一般尽量使更多的力落在坐标轴上,以减少分解力的个数,从而达到简化计算的目的。 5.整体法与隔离法 整体法的含义:所谓整体法就是对物理问题的整个系统或整个过程进行分析、研究的方法。 整体法的思维特点:整体法是从局部到全局的思维过程;是系统论中的整体原理在物理学中的运用。 整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情 况和全过程的受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。 隔离法的含义:为了弄清系统(连结体)内某个物体的受力和运动情况用隔离法。 隔离法的基本步骤:( 1)明确研究对象或过程、状态;( 2)4 / 13 将某个研究对象或某段运动过程、某个状态从全过程中分离出来;( 3)画出某状态下的受力图或运动过程示意图;( 4)选用适当的物理规律列方程求解。 说明:通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(或一个物体的各部分)间相互作用时,用隔离法;有时解答一个问题需 要多次选取研究对象,整体法和隔离法交替应用。 6.动态平衡问题的分析方法 在有关物体平衡的问题中,存在着大量的动态平衡问题,所谓动态平衡问题,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题。即任一时刻物体均处于平衡状态。 ( 1)解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变参量与自变参量的一般函数式,然后根据自变参量的变化确定应变参量的变化。 ( 2)图解法:对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下的力的矢量图(画在同一图中),然后根据有向线 段(表示力)的长度变化判断各个力的变化情况。 【典型例题】 题型 1 平衡问题的基本解法(正交分解法) 例 1、如图( 1)所示,重 40N 的物体与竖直墙间的动摩擦5 / 13 因数为。若受到与水平线成 45 角的斜向上的推力 F 作用而沿竖直墙匀速上滑,则 F 多大? 解析:取物体为研究对象,其受力情况如图( 2)所示,取沿墙面方向为 y 轴,垂直于墙面为 x 轴,由平衡条件可知 , , 另外考虑到滑动摩擦力与弹力之间有 由 式可解得, 即当推力 F 大小为 71N时,物体沿墙面匀速上滑。 点评:用正交分解法求解 时,坐标轴的建立应尽量减少力的分解。 题型 2 感受整体与隔离法的精妙 例 2.有一直角支架 AoB,杆 Ao水平放置,表面粗糙,杆 Bo竖直向下,表面光滑, Ao上套有小环 P, Bo上套有小环 Q,两环质量均为 m,两环间由一根质量可忽略、不可伸长的细线相连,并在某一位置平衡如图(甲)所示,现将 P 向左移一小段距离,两环再次达到平衡,那么将移后的平衡状态和原来的平衡状态比较, Ao 杆对 P 环的支持力 FN 和细绳上的拉力 FT的变化情况是 不变, FT变大不变, FT变小 6 / 13 变大, FT变大变大, FT变小 解析:解法一:本 题可以分步计算,首先利用整体法计算杆oA 对 P 环的支持力 FN,因 P 和 Q 所组成的系统在竖直方向只受到重力及杆 oA 对 P 球的支持力 FN,系统又处于平衡状态,因而竖直方向的合力为零,则支持力 FN 的大小一直应与 P 和 Q 两环的重力相等,即 FN的大小不变,第二步由环 Q的受力如图(乙)可知,受的重力不变而 P 向左移时绳与竖直方向的夹角 减小,由 FT=mg/cos 知,绳上的拉力 FT变小,故答案为 B。 乙 解法二:把 P、 Q 分开用隔离法,则 P、 Q 的受力如图(乙)所示。由 Q 的受力可得,减小,拉力 FT 变小,则 Q 对 P 的拉力,由 P 的 受力知。 解题技巧妙法总结:本题的创新之处在于一题多解,以及思维上的创新 整体法的灵活运用,并且把力的合成与物体平衡结合起来,特别是整体的平衡,又可分成各个方向上的平衡,再由竖直方向合力为零和水平方向合力为零计算。 例 3.如图( 1)所示,固定在水平面上的光滑半球,球心 o 的正上方固定一小定滑轮,细线一端拴一小球 A,另一端绕过定滑轮,今将小球从图中所示的初位置缓慢地拉至B 点,在小球到达 B 点前的过程中,小球对半球的压力 FN及7 / 13 细线的拉力 F1的大小变化是 变大, F1变小变小, F1变大 不变, F1 变小变大, F1变大 解析:由于三力 F1、 FN 与 G 首尾相接构成的矢量三角形与几何三角形 Aoo 相似,如图( 2)所示 所以有, 。 所以 , 由题意知当小球缓慢上移时,减小,不变, R 不变,故 F1减小、 FN不变。 答案: c 点评:此题画动态中的矢量三角形无法比较大小,利用相似关系列出力的解析关系,从而分析解题。 例 4.如图( 1)所示,人重为 G1=500N,平台重为 G2=300N,人用绳子通过滑轮装置拉住平台,滑轮的重量及摩擦均不计,人与平台均处于静止状态,求人对绳子的拉力及人对平台 的压力。 解析:求人对绳子的拉力及人对平台的压力,可以把人隔离8 / 13 出来,但仅仅以人为研究对象不可能求出同一直线上的两个力的大小,同时平台也处于平衡状态,所以须同时结合人和平台的平衡条件才能求出这两个力的大小。 分别以人和平台为研究对象进行受力分析,如图( 2)所示,人受到重力 G1和平台的支持力 FN 及绳子的拉力作用,而平台受到重力 G2,人对它的压力,左边的绳子拉力,右边的绳子拉力。由作用力与反作用力可知,。 由平衡条件可知:。 题型 4 动态平衡问题的图解法 例 5.如图甲所示,重为 G 的物体系在 oA、 oB两根等长的轻绳上,轻绳的 A 端和 B 端挂在半圆形的支架上,若固定 A 端的位置,将 oB 绳的 B 端沿半圆支架从水平位置缓慢移动到竖直位置 c 的过程中 绳子上的拉力先减小后增大 绳子上的拉力先增大后减小 绳子上的拉力先减小后增大 绳子上的拉力先增大后减小 解析:由结点 o 的受力情况可知,这是一个三力平衡问题,又因为题中出现了 “ 缓慢移动 ” 的字眼,故为动态平衡一类的问题,求解此类问题一般要运用动态图解法。 取结点 o 为研究对象,它受到重物的拉力为 F,其大小等于9 / 13 G,把此拉力 F 沿 oA、 oB的方向分解成 FoA和 FoB两个力,如图乙所示,则此三力 F、 FoA、 FoB必然构成一个矢量三角形,其中 FoA 即为 oA 绳子上的拉力, FoB 即为 oB 绳子上拉力。因 oA 绳子固定不动,故 FoA 的方向不变,在缓慢向上移动 B 点的过程中,任意选取三个点 B1、 B2、 B3,可以看到oA 绳上拉力 FoA 不断减小,而 oB 绳上的拉力 FoB 却是先减小后增大,当力 FoA 垂直于力 FoB 时,绳 oB 上的拉力到达最小值,即绳子 oB 上的拉力是先减小后增大,故 A 选项正确。 答案: A 例 6.( XX年广东)如图( 1)所示,在倾斜角为的固定光滑斜面上,质量为 m 的 物体受外力 F1和 F2的作用, F1方向水平向右, F2 方向竖直向上,若物体静止在斜面上,则下列关系正确的是 A. B. c. D. 解析:对物体进行受力分析如图( 2)所示,物体可能受重力 G、支持力 FN 和两个外力 F1、 F2 这四个力作用,分别沿10 / 13 斜面方向和垂直于斜面方向正交分解。因物体静止,合外力为零,所以,若,则物体不可能静止,沿斜面方向有,所以选项 B 正确。 答案: B 【模拟试题】(答题时间: 40分钟) 1.如图所示, A 和 B 两物体相互接触并静止在水平面上,现有两个水平推力、分别作用在 A、 B 上, A、 B 两物体仍保持静止,则 A、 B 之间的作用力大小是 A.一定等于零 B.不等于零,但一定小于 c.一定等于 D.可能等于 2.如图所示,质量为 m 的物体在沿斜面向上的拉力 F 作用下沿放在水平地面上的质量为 m 的粗糙斜面匀速下滑,此过程中斜面保持静止,则地面对斜面 无摩擦力 有水平向左的摩擦力 支持力为 支持力小于 11 / 13 A.B.c.D. 3.跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落,已知运动员和他身上装备的总重量为,圆顶形降落伞伞面的重量为,有 8 条相同的拉线一端与飞行员相连(拉线重量不计),另一端均匀分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成角,那么每根拉线上的张力大小为 4.在倾角为的粗糙斜面上叠放着质量分别为与 2m 的 A、 B 两物体,刚好都处于静止状态,如图所示,则下列说法正确的是 、 B 两物体受到的摩擦力之比为 1: 2 B.因为 A、 B 都处于静止状态,所以它们受到的摩擦力之比为 1: 1 c.如果斜面的倾角改变,使正压力改变,则两物体所受摩擦力的比值也随之改变 D.因为 A、 B 间、 B 与斜面间接触面的动摩擦因数的 关系不知道,所以比值不能确定 5.如图所示,轻绳的一端系在质量为 m 的物体上,另一端系在一个圆环上,圆环套在粗糙水平横杆 mN上,现用水平力 F12 / 13 拉绳上一点,使物体处在图中实线位置,然后改变 F 的大小,使其缓慢下降到图中的虚线位置,圆环仍静止在原位置,则在这一过程中,水平拉力 F、环与横杆的摩擦力和环对横杆的压力的变化情况是 逐渐增大,保持不变,逐渐增大 逐渐增大,逐渐增大,保持不变 逐渐减小,逐渐增大,逐渐减小 逐渐减小,逐渐减小,保持不变 6.质量相同的甲、乙两物体叠放在水平桌面上,如图所示 ,用力 F 拉乙,使物体甲和乙一起匀速运动,此时,设甲和乙之间的摩擦力为,乙与桌面之间的摩擦力为,则=_, =_。 7.如图所示, A、 B 是两块质量均为 m 的木块,它们之间及 B与地面间的动摩擦因数均为。现对 A 施加一水平向右的拉力F,使 A 向右匀速运动,滑轮摩擦不计,则 F 的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年副高卫生职称-临床医学类-变态反应(副高)历年参考题库典型考点含答案解析
- 2025年初级卫生职称-初级技师-临床医学检验技术(师)代码:207历年参考题库含答案解析
- 2025年住院医师规培-重庆-重庆住院医师规培(儿外科)历年参考题库含答案解析(5套)
- 高级文秘人才面试题及答案
- 2025年住院医师规培-福建-福建住院医师规培(核医学科)历年参考题库含答案解析
- 气象信息基础知识培训课件
- 2025年住院医师规培-湖北-湖北住院医师规培(耳鼻咽喉科)历年参考题库含答案解析
- 2025年住院医师规培-浙江-浙江住院医师规培(核医学科)历年参考题库含答案解析
- 2025年住院医师规培-河北-河北住院医师规培(精神科)历年参考题库含答案解析
- 气缸压缩压力测量课件
- 2025年云南省高校大学《辅导员》招聘考试题库及答案
- 消费品市场2025年消费者对绿色包装认知及需求调研可行性研究报告
- 台球厅消防知识培训课件
- 充电桩运维服务协议
- 2025至2030中国防砸安全鞋行业运营态势与投资前景调查研究报告
- 2025年医疗器械仓库管理培训试题及答案
- 2024年湖南省古丈县事业单位公开招聘工作人员考试题含答案
- 卵巢性索间质肿瘤课件
- 2025甘肃行政执法资格考试模拟卷及答案(题型)
- 2025-2026年秋季第一学期学校德育工作安排表:德润心田、智启未来、行塑栋梁
- 成人零基础英语教学课件
评论
0/150
提交评论