全等三角形.doc_第1页
全等三角形.doc_第2页
全等三角形.doc_第3页
全等三角形.doc_第4页
全等三角形.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内装订线学校:_姓名:_班级:_考号:_外装订线绝密启用前2014-2015学年度新余四中学校月考卷考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三四五总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题(题型注释)1下列不能推得ABC和ABC全等的条件是( )A.AB=AB, A=A, C=CB.AB=AB,AC=AC,BC=BCC.AB=AB,AC=AC, B=BD.AB=AB, A=A,B=B2如图,ABC中,AB=AC,A=36,AB的垂直平分线DE交AC于D,交AB于E,则BDC的度数为( )A.72 B.36 C.60 D.823在ABC中,AB=8,AC=6,则BC边上的中线AD的取值 范围是( )。A6AD8 B2AD14 C1AD7 D无法确定4已知等腰三角形一腰上的高线与另一腰的夹角为 ,那么这个等腰三角形的顶角等于( )A.15或75 B.140 C.40 D.140或40 ( )5如图所示,在ABC中,A=90,BD平分ABC,AD=2cm,AB+BC=8,SABC=( )A8 B.4 C.2 D.1 6已知,如图,ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个 ( )(1)AD平分EDF;(2)EBDFCD; (3)BD=CD;(4)ADBC(A)1个 (B)2个 (C)3个 (D)4个第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)7如果ABCDEF,且ABC的周长是100cm,A、B分别与D、E对应,且AB=30cm,DF=25cm,那么BC的长为 。8如图已知:AD平分BAC,AC=AB+BD,B=56求C= 9如图,已知中, 是高和的交点,则线段的长度为 。10如图,ABC=50,AD垂直平分线段BC于点D,ABC的平分线BE交AD于点E,连接EC,则AEC的度数是 11如图,ABC的周长为28cm,把ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则ABD的周长是 cm12在等边ABC中,D是边AC上一点,连接BD,将BCD绕点B逆时针旋转60,得到BAE,连接ED,若BC = 10,BD = 9,则AED的周长是_EABCD13如图,已知坐标平面内有两点A(1,0),B(2,4),现将AB绕着点A顺时针旋转90至AC位置,则点C的坐标为 14如图所示,EF90,BC,AEAF,结论:EMFN;AF/EB;FANEAM;ACNABM其中正确的有_评卷人得分三、解答题(题型注释)15如图,ABBD于点B,DEBD于点,AE交BD于点C,且BC=DC.求证AB=ED. 16已知:如图,、四点在一直线上,AF=CD,ABDE,且AB=DE,求证:ABCDEF17已知,如图AB=AC,BD=CD,DEAB于点E,DFAC于点F,求证:DE=DF18如图,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF。EABMODNFC12(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:MAE=NCF。19(1)如图,在ABC中,ABC的平分线BF交AC于点F,过点F作DFBC。求证:BD=DF;(2)如图,在ABC中,ABC的平分线BF与ACB的平分线CF相交于点F,过点F作DEBC,交直线AB于点D,交直线AC于点E,那么BD、CE、DE之间存在什么关系?请证明这种关系;(3)如图,在ABC中,ABC的平分线BF与ACB的外角平分线CF相交于点F,过点F作DEBC,交直线AB于点D,交直线AC于点E,那么BD、CE、DE之间存在什么关系?请写出你的猜想(不需证明)。20如图:在ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何。21两个大小不同的等腰直角三角形三角板如图所示放置,图是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC(1)请找出图中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DCBE22(10分)在ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧作ADE,使AE=AD,DAE=BAC,连接CE(1)如图,点D在线段BC的延长线上移动,若BAC=40,则DCE= (2)设BAC=m,DCE=n如图,当点D在线段BC的延长线上移动时,m与n之间有什么数量关系?请说明理由当点D在直线BC上(不与B、C重合)移动时,m与n之间有什么数量关系?请直接写出你的结论23作图题:(5+5+5,共15分)(1)如图,已知AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等。(2)利用方格纸画出ABC关于直线的对称图形ABC。(3)如图,已知在ABC中,AB=AC ,AD是BC边上的高,P是AB边上的一点,试在高AD上找一点E,使得PEB的周长最短。24如图,在中,AD平分且平分BC交BC于G,于E,交AC的延长线于F.(1)求证:BE=CF(2)如果,求AE、BE的长.第5页 共8页 第6页 共8页本卷由【在线组卷网】自动生成,请仔细校对后使用,答案仅供参考。参考答案1C【解析】全等三角形判定定理:A是“AAS”;B是“SSS”;D是“ASA”。所以选C。2A【解析】 试题分析:AB=AC,A=36,ABC=C=72,DE垂直平分AB,A=ABD=36,BDC=A+ABD=36+36=72故选A考点:1.线段垂直平分线的性质;2.等腰三角形的性质3C【解析】 试题分析:延长AD至E,使DE=AD,连接CE在ABD和ECD中,ABDECD(SAS),CE=AB在ACE中,CE-ACAECE+AC,即22AD14,1AD7故选:C考点:1.三角形三边关系;2.全等三角形的判定与性质4D.【解析】 试题分析:当为锐角三角形时如图,高与右边腰成50夹角,由三角形内角和为180可得,顶角为40;当为钝角三角形时如图,此时垂足落到三角形外面,因为三角形内角和为180,由图可以看出等腰三角形的顶角的补角为40,三角形的顶角为140故选D考点:等腰三角形的性质5A【解析】试题分析:如图,过点D作DEBC于E,BAC=90,BD平分ABC,DA=DE=2,SABC=SBAD+SBCD=ABAD+BCDE=(BC+AB)2BC+AB=8,ABC的面积=82=8故选A考点:1.勾股定理;2.角平分线的性质6D【解析】试题分析:(1)如图,AB=AC,BE=CF,AE=AF又AD是角平分线,1=2,在AED和AFD中,AEDAFD(SAS),3=4,即DA平分EDF故(1)正确;如图,ABC中,AB=AC,AD是角平分线,ABDACD又由(1)知,AEDAFD,EBDFCD故(2)正确;(3)由(1)知,AEDAFD故(3)正确;(4)如图,ABC中,AB=AC,AD是角平分线,ADBC,即AD垂直BC故(4)正确综上所述,正确的结论有4个故选D考点:1.全等三角形的判定与性质;2.等腰三角形的性质745cm【解析】试题分析:根据全等三角形对应边相等可得AC=DF,再根据三角形的周长的定义列式计算即可得解试题解析:ABCDEF,AC=DF=25cm,BC=100-30-25=45cm考点:全等三角形的性质831【解析】 试题分析:如图,在AC上截取AE=AB,连接DE,可以证明ABDADE,然后利用全等三角形的性质和已知条件可以证明DEC是等腰三角形,接着利用等腰三角形的性质即可求解试题解析:如图,在AC上截取AE=AB,连接DE,AD平分BAC,BAD=EAD,而AD是公共边,ABDADE,B=AED=62,DE=BD,而AB+BD=AC=AE+CE,DE=CE,EDC=C,而AED=C+EDC=62,C=31考点:全等三角形的判定与性质94【解析】试题分析:AD是ABC的高,ADBC,ADB=ADC=90,ABC=45,BAD=45=ABD,AD=BD,BEAC,BEC=90,FBD+C=90,CAD+C=90,FBD=CAD,在FBD和CAD中,FBDCAD(ASA),CD=DF=4考点:1. 全等三角形的判定与性质;2. 等腰三角形的判定与性质10115【解析】试题分析:先由题意得出垂直平分线垂直且平分BC,BE=EC,由题意可得C=EBC=50=25,所以AEC=90+25=115易求解试题解析:AD垂直且平分BC于点D,BE=EC,DBE=DCE,又ABC=50,BE为ABC的平分线,EBC=C=50=25,AEC=C+EDC=90+25=115,AEC=115故答案为:115考点:1.线段垂直平分线的性质;2.三角形内角和定理;3.三角形的外角性质;4.角平分线的性质1120cm.【解析】试题分析:首先根据折叠方法可得AE=CE,AD=CD,再根据AE的长可以计算出AB+CB,进而可得ABD的周长试题解析:根据折叠方法可得AE=CE,AD=CD,AE=4cm,CE=4cm,ABC的周长为28cm,AB+CB=28-8=20(cm),ABD的周长是:AB+BD+AD=AB+BC=20cm.考点:翻折变换(折叠问题)1219【解析】试题分析:将BCD绕点B逆时针旋转60得到BAEBDCBAEBE=BD,DBE=60,AE=CDDBE是等边三角形DE=BD=9AED的周长=DE+AD+AE=DE+AC=19考点:1、旋转的性质;2、等边三角形的性质13(5,3)【解析】试题分析:过点B、C分别作BDx轴,CEx轴,垂足分别为D、E点,易证BADACE,所以AE=BD=4,CE=AB=3,所以OE=OA+AE=1+4=5,故C点坐标为(5,3)如图:过点B、C分别作BDx轴,CEx轴,垂足分别为D、E点,易证BADACEAE=BD=4,CE=AB=3,又OE=OA+AE=1+4=5C点坐标为(5,3)考点:1三角形全等的判定与性质;2点的坐标14【解析】试题分析:由E=F=90,B=C,AE=AF,利用“AAS”得到ABE与ACF全等,根据全等三角形的对应边相等且对应角相等即可得到EAB与FAC相等,AE与AF相等,AB与AC相等,然后在等式EAB=FAC两边都减去MAN,得到EAM与FAN相等,然后再由E=F=90,AE=AF,EAM=FAN,利用“ASA”得到AEM与AFN全等,利用全等三角形的对应边相等,对应角相等得到选项和正确;然后再C=B,AC=AB,CAN=BAM,利用“ASA”得到ACN与ABM全等,故选项正确;若选项正确,得到F与BDN相等,且都为90,而BDN不一定为90,故错误考点:全等三角形的判定与性质15见解析【解析】解:因为ABBD于点B,DEBD于点,所以ABC=EDC=90,BC=DC,ACB=ECD,所以ABCEDC。所以AB=ED。如果去掉线段BE,两个三角形全等非常明显,所以审题看图都要注意排除干扰项。16见解析【解析】两直线平行,内错角相等;两线段相等加上重合部分也相等,审题时注意这些隐含条件。解:因为AF=CD,所以AF+CF=CD+CF,即AC=DF。因为ABDE,所以D=A。因为AC=DF,D=A,AB=DE,所以ABCDEF17见解析【解析】解:连接AD,因为AB=AC,BD=CD,AD=AD,所以ABDACD,所以,CAD=BAD。因为DEAB于点E,DFAC于点F,所以E=F=90.由E=F,CAD=BAD,AD=AD得ADFADE。所以DE=DF无法直接证明DE=DF,通过添加辅助线AD,可以证明ABDACD,得到CAD=BAD,由AAS证明ADFADE,得到对应边相等。18(1)4对;(2)证明见解析.【解析】试题分析:(1)单个三角形全等的是:AMOCNO,AMECNF由2部分组成全等的是:OCFOAE,ABCCDA;(2)由题中已知条件可证得OCFOAE,进而求得EAO=FCO,而后利用平行四边形的对边平行的性质求得相应的内错角相等,进而求解试题解析:(1)有4对全等三角形分别为AMOCNO,OCFOAE,AMECNF,ABCCDA;(2)OA=OC,1=2,OE=OF,OCFOAEEAO=FCO在平行四边形ABCD中,ABCD,BAO=DCOEAM=NCF考点:全等三角形的判定与性质19(1)证明见解析;(2)BD+CE=DE;(3)BD-CE=DE【解析】 试题分析:(1)根据平行线的性质和角平分线定义得出DFB=CBF,ABF=CBF,推出DFB=DBF,根据等角对等边推出即可;(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论试题解析:(1)BF平分ABC,ABF=CBF,DFBC,DFB=CBF,DFB=DBF,BD=DF;(2)BD+CE=DE,理由是:BF平分ABC,ABF=CBF,DFBC,DFB=CBF,DFB=DBF,BD=DF;同理可证:CE=EF,DE=DF+EF,BD+CE=DE;(3)BD-CE=DE考点:1.等腰三角形的判定与性质;2.平行线的性质20(1)证明见解析;(2)位置关系是ADGA.【解析】 试题分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出ADB=GAC,再利用三角形的外角和定理得到ADB=AED+DAE,又GAC=GAD+DAE,利用等量代换可得出AED=GAD=90,即AG与AD垂直试题解析:(1)证明:BEAC,CFAB, HFB=HEC=90,又BHF=CHE,ABD=ACG,在ABD和GCA中,ABDGCA(SAS),AD=GA(全等三角形的对应边相等);(2)位置关系是ADGA,理由为:ABDGCA,ADB=GAC,又ADB=AED+DAE,GAC=GAD+DAE,AED=GAD=90,ADGA考点:全等三角形的判定与性质21(1)BAECAD,理由见解析;(2)证明见解析.【解析】 试题分析:可以找出BAECAD,条件是AB=AC,DA=EA,BAE=DAC=90+CAE由可得出DCA=ABC=45,则BCD=90,所以DCBE试题解析:ABC,DAE是等腰直角三角形,AB=AC,AD=AE,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论