




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.在数列高考知识点大扫描知识网络 数列基本概念数列是一种特殊函数,对于数列这种特殊函数,着重讨论它的定义域、值域、增减性和最值等方面的性质,依据这些性质将数列分类:依定义域分为:有穷数列、无穷数列;依值域分为:有界数列和无界数列;依增减性分为递增数列、递减数列和摆动数列。数列的表示方法:列表法、图象法、解析法(通项公式法及递推关系法);数列通项:2、等差数列 1、定义 当,且 时,总有 ,d叫公差。 2、通项公式 3、前n项和公式 由 ,相加得 , 还可表示为,是n的二次函数。特别的,由 可得 。 4、由三个数,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项若,则称为与的等差中项 5、等差数列的性质:(1)(、),则;特别地,若(、),则(2),成等比数列(3)若项数为,则,(4)若项数为,则, 3、等比数列1、 定义 当,且 时,总有 , q叫公比。2、 通项公式: , 在等比数列中,若 , 则.3、 、在与中间插入一个数,使,成等比数列,则称为与的等比中项若,则称为与的等比中项4、 等比数列的前项和的性质:(1)(、),则;若是等比数列,且(、),则(2),成等比数列。5、 前n项和公式: 由 , 两式相减,当 时, ;当时 , 。 关于此公式可以从以下几方面认识: 不能忽视 成立的条件:。特别是公比用字母表示时,要分类讨论。 公式推导过程中,所使用的“错位相消法”,可以用在相减后所得式子能够求和的情形。 如,公差为d 的等差数列, ,则,相减得 ,当 时,当时 ,;第一节 等差数列的概念、性质及前n项和题根一 等差数列an中, ,求S20思路等差数列前n项和公式:1、 由已知直接求a1 ,公差d.2、 利用性质请你试试 111、 等差数列an 满足 ,则有 ( )A、 B、 C、 D、 2、 等差数列中,a3+a7-a10=8,a11-a4=4,求 。 第1变 求和方法倒序相加法变题1 等差数列an共10项, ,求Sn.思路 已知数列前四项和与后四项和,结合通项性质,联想Sn公式推导方法。请你试试 121、 等差数列an前n项和为18 ,若 , , 求项数n .2、 求和 。第2变 已知前n项和及前m项和,如何求前n+m项和变题2 在等差数列an中,Sn=a,Sm=b,(mn),求Sn+m的值。思路 下标存在关系:m+n=m+n, 这与通项性质 是否有关?请你试试 131、 在等差数列an中,求 。 2、在等差数列an中,求 。第3变 已知已知前n项和及前2n项和,如何求前3n项和变题3 在等差数列an中,求 思路 由寻找之间的关系。 请你试试 141、在等差数列an中,求 第二节 等比数列的概念、性质及前n项和题根二 等比数列an , , 求。思路 1、由已知条件联立,求,从而得2、由等比数列性质,知成等比数列。 请你试试2 1 等比数列an , ,若 ,则_。 第1变 连续若干项之和构成的数列仍成等比数列变题2 等比数列an ,求 。思路 等比数列中,连续若干项的和成等比数列。 请你试试221、等比数列an , 时,求。2、等比数列an , 时,求。第三节 常见数列的通项求法一、公式法例1 已知数列满足,求数列的通项公式。二、累加法例2 已知数列满足,求数列的通项公式。例3 已知数列满足,求数列的通项公式。三、累乘法例4 已知数列满足,求数列的通项公式。四、作差法例5 (数列的前n项和为,且满足,. 求的通项公式五,构造法例6 数列中,若,求数列的通项公式。例7 数列第四节 常见数列求和方法1直接法:即直接用等差、等比数列的求和公式求和。(1)等差数列的求和公式: (2)等比数列的求和公式(切记:公比含字母时一定要讨论)2公式法: 3错位相减法:比如4裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。常见拆项公式: ; 5分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。6合并求和法:如求的和。7倒序相加法:8其它求和法:如归纳猜想法,奇偶法等(二)主要方法:1求数列的和注意方法的选取:关键是看数列的通项公式; 2求和过程中注意分类讨论思想的运用;3转化思想的运用;(三)例题分析:例12错位相减法求和例2已知 ,求数列an的前n项和Sn.3.裂项相消法求和例3.求和4.倒序相加法求和例4求证:求值:5其它求和方法还可用归纳猜想法,奇偶法等方法求和。例5已知数列。第四节 递推数列的通项公式及前n项和综合例1数列的前n项和为,且满足,.(1)求的通项公式; (2)求和Tn =.例2 已知数列,a1=1,点在直线上.(1)求数列的通项公式;(2)函数,求函数最小值.例3 设数列的前项和为,且,其中是不等于和0的实常数.(1)求证: 为等比数列;(2)设数列的公比,数列满足,试写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产500万套玩具项目初步设计(模板)
- 年产200万吨包装纸项目实施方案(参考模板)
- 年产10亿只芯片产品项目可行性研究报告(范文)
- 2022年精彩6月毕业讲话稿
- 教育营养配餐项目实施方案(参考范文)
- 四川省雅安市名山中学2023-2024学年高一上学期12月月考政治题 含解析
- 复合材料产品设计
- 内蒙古鸿德文理学院《过程控制与自动化仪表》2023-2024学年第二学期期末试卷
- 北京科技大学《大学生心理团体辅导》2023-2024学年第二学期期末试卷
- 上海民远职业技术学院《数字传输原理与系统》2023-2024学年第二学期期末试卷
- 3D数字游戏艺术-2-测量分评分表-3D建模-30分
- 髋关节内固定术后护理
- 换滤芯合同(2篇)
- 第01讲 力、重力、弹力(解析版)-2024全国初中物理竞赛试题编选
- 2024至2030年中国1200伏碳化硅MOSFET市场现状研究分析与发展前景预测报告
- 公司废旧物资移交清单
- 建筑工地 施工现场 禁止饮酒 协议书
- 2024年安徽中考英语词汇表
- 2024年山西建设投资集团有限公司校园招聘考试笔试试题及答案解析
- 大国外交演讲与辩论智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- 人教九年级历史上册《七单元大单元设计》教学课件
评论
0/150
提交评论