高考数学 4.5数系的扩充与复数的引入配套课件 文 新人教A版 .ppt_第1页
高考数学 4.5数系的扩充与复数的引入配套课件 文 新人教A版 .ppt_第2页
高考数学 4.5数系的扩充与复数的引入配套课件 文 新人教A版 .ppt_第3页
高考数学 4.5数系的扩充与复数的引入配套课件 文 新人教A版 .ppt_第4页
高考数学 4.5数系的扩充与复数的引入配套课件 文 新人教A版 .ppt_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五节数系的扩充与复数的引入 三年30考高考指数 1 了解复数的基本概念 2 理解复数相等的充要条件 3 了解复数的代数表示法及其几何意义 4 掌握复数代数形式的四则运算 5 了解复数的代数形式的加 减运算的几何意义 1 复数的基本概念是考查的重点 2 复数代数形式的乘除运算 复数相等是考查的重点 也是热点 3 题型以客观题为主 1 复数的有关概念 1 复数的定义形如a bi a b r 的数叫复数 其中实部是 虚部是 a b 2 复数的分类 a bi为实数 则 a bi为虚数 则 b 0 b 0 a bi为纯虚数 则 a bi为零 则 a 0且b 0 a b 0 3 复数相等 a bi c di a b c d r 4 共轭复数 a bi与c di共轭 a b c d r 5 复数的模向量的长度叫做复数z a bi的模 记作 或 即 z a bi a b r a c b d a c b d z a bi 即时应用 判断下列命题是否正确 请在括号中填写 或 1 若3 2 x i为实数 x r 则x 2 2 已知x y r 若 x 2 yi 3 2i 则x 1 y 2 3 2i 3的共轭复数为 3 2i 4 1 i 2 i 解析 1 3 2 x i若为实数 则2 x 0 x 2 故 1 正确 2 由复数相等知 故 2 正确 3 2i 3的共轭复数为 2i 3 故 3 错误 4 故 4 错误 答案 1 2 3 4 2 复数的几何意义 1 复平面的概念 建立 来表示复数的平面叫做复平面 2 实轴 虚轴 在复平面内 x轴叫做 y轴叫做 实轴上的点都表示 除原点以外 虚轴上的点都表示 3 复数的几何表示 复数z a bi复平面内的点 平面向量 直角坐标系 实轴 虚轴 实数 纯虚数 一一对应 z a b 一一对应 即时应用 判断下列命题是否正确 请在括号内填写 或 原点是实轴与虚轴的交点 对应的点位于第四象限 若z 3 2i 则在复平面上对应的点在第三象限 解析 原点在实轴上 且在虚轴上 故 正确 1 i对应点为 1 1 在第四象限 故 正确 由 3 2i知 不正确 答案 3 复数的运算 1 复数的加 减 乘 除运算法则设z1 a bi z2 c di a b c d r 则 加法 z1 z2 a bi c di 减法 z1 z2 a bi c di 乘法 z1 z2 a bi c di 除法 a c b d i a c b d i ac bd ad bc i 2 复数加法的运算定律复数的加法满足交换律 结合律 即对任何z1 z2 z3 c 都有z1 z2 z1 z2 z3 z2 z1 z1 z2 z3 即时应用 1 设z 3i 2 则 2 1 i i2 i3 3 为实数 则实数a 4 3 i 1 i 解析 1 z 3i 2 2 1 i i2 i3 1 i 1 i 0 3 为实数 a 1 4 原式 答案 1 1 3i 2 0 3 1 4 5 复数的有关概念 方法点睛 解决有关复数概念问题的方法 1 复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题 只需把复数化为代数形式 列出实部 虚部满足的方程 不等式 组即可 2 求复数模的常规思路是利用复数的有关运算先求出复数z 然后利用复数的模公式求解 提醒 解题时 需注意两方面问题 一是正确理解和表达有关概念 如a bi为实数的条件 其共轭复数是什么 a bi的虚部是什么 二是加强复数代数形式的四则运算的熟练程度 例1 2011 安徽高考 设i是虚数单位 复数为纯虚数 则实数a为 解题指南 先把复数化成a bi a b r 的形式 再根据复数为纯虚数的概念列出关于a的条件去解答即可 规范解答 选a 又是纯虚数 则所以a 2 反思 感悟 处理有关复数基本概念的问题 关键是掌握复数的相关概念 找准复数的实部与虚部 即实部和虚部必须是实数 从定义出发解决问题 变式训练 已知复数试求实数a分别取什么值时 z分别为 1 实数 2 纯虚数 解析 1 当z为实数时 则有 a 6 即a 6时 z为实数 2 当z为纯虚数时 则有 不存在实数a使z为纯虚数 复数的几何意义 方法点睛 复数的几何意义及应用 1 z 表示复数z对应的点与原点的距离 z1 z2 表示两点间的距离 即表示复数z1与z2对应点间的距离 2 结合复数的几何意义 运用数形结合的思想 可把复数 解析几何有机地结合在一起 达到了学科内的融合 而且解题方法更灵活 例2 1 2011 山东高考 复数 i为虚数单位 在复平面内对应的点所在象限为 a 第一象限 b 第二象限 c 第三象限 d 第四象限 2 若i为虚数单位 图中复平面内点z表示复数z 则表示复数的点是 a e b f c g d h 3 如图 平行四边形oabc 顶点o a c分别表示0 3 2i 2 4i 试求 对应的复数 对应的复数 对应的复数 解题指南 1 2 两题解题的关键是把所给复数化成a bi a b r 的形式 再利用复数的几何意义求解 3 利用对应的复数等于点a对应的复数减去点c对应的复数 和向量的运算去解决 规范解答 1 选d 所以复数z所对应的点在第四象限 2 选d 由图可得z 3 i 对应的点为 2 1 即点h 3 对应的复数为 3 2i 对应的复数为 3 2i 对应的复数为 3 2i 2 4i 5 2i 互动探究 本例 3 题中 已知条件不变 若设p为复平面上一点且满足如何求解p点的轨迹方程 解析 设p代表的复数为z x yi x y r p点轨迹是以原点为圆心 以为半径的圆 故点p的轨迹方程为x2 y2 29 反思 感悟 解决此类问题 一方面要了解复数的几何意义 如复数的向量表示 复数表示的点在复平面内的位置 了解复数加 减运算的几何意义 另一方面要准确地进行复数代数形式的四则运算 变式备选 1 若则复数z对应的点在复平面内的 a 第一象限 b 第二象限 c 第三象限 d 第四象限 解析 选c 由可知 复数z对应的点在复平面内的第三象限 2 虚数 x 2 yi 其中x y均为实数 当此虚数的模为1时 的取值范围是 解析 选b 设则k为过圆 x 2 2 y2 1上点及原点的直线的斜率 如图 设圆 x 2 2 y2 1的圆心为m 过原点作圆m的切线oa 则sin aom 又 y 0 k 0 由对称性可知选b 复数的代数运算 方法点睛 1 复数的代数运算技巧复数的四则运算类似于多项式的四则运算 此时含有虚数单位i的看作一类 不含i的看作另一类 分别合并即可 但要注意把i的幂写成最简单的形式 在运算过程中 要熟悉i的特点及熟练应用运算技巧 2 几个常用结论在进行复数的代数运算时 记住以下结论 可提高计算速度 1 1 i 2 2i 2 1 i 2 2i 3 4 5 b ai i a bi 6 i4n 1 i4n 1 i i4n 2 1 i4n 3 i n n 例3 1 2011 重庆高考 复数 2 2011 湖北高考 i为虚数单位 则 a i b 1 c i d 1 3 2011 浙江高考 把复数z的共轭复数记作 i为虚数单位 若z 1 i 则 1 z a 3 i b 3 i c 1 3i d 3 解题指南 根据复数的四则运算法则求解 规范解答 1 选c 2 选a 3 选a 互动探究 本例 3 中题干不变 若则复数z 解析 1 i 2 i 1 3i z 1 3i 答案 1 3i 反思 感悟 进行复数代数形式的四则运算 一方面要严格执行运算法则 另一方面也要注意一些常用的运算技巧 如本题中的的性质 其实复数的除法运算就是分母实数化的运算 变式备选 1 复数的值是 a 1 b 1 c i d i 解析 选a 故选a 2 复数 a 0 b 2 c 2i d 2i 解析 选d 故选d 3 设z 1 i 则 a 1 i b 1 i c 1 i d 1 i 解析 选d 故选d 创新探究 复数命题新动向 典例 2011 陕西高考 设集合m y y cos2x sin2x x r n x x i为虚数单位 x r 则m n为 a 0 1 b 0 1 c 0 1 d 0 1 解题指南 集合m为函数值域 n为不等式的解集 其中为复数的模 弄清集合的元素是解题的关键 规范解答 选c y cos2x sin2x cos2x 0 1 所以m 0 1 又 n 1 1 m n 0 1 故选c 阅卷人点拨 通过对本题的深入研究 我们可以得到如下创新点拨和备考建议 1 2011 天津高考 i是虚数单位 复数 a 2 i b 2 i c 1 2i d 1 2i 解析 选b 2 2011 浙江高考 若复数z 1 i i为虚数单位 则 1 z z a 1 3i b 3 3i c 3 i d 3 2i 解析 选a z 1 i 1 z z 2 i 1 i 1 3i 3 2011 湖南高考 若a b r i为虚数单位 且 a i i b i 则 a a 1 b 1 b a 1 b 1 c a 1 b 1 d a 1 b 1 解析 选d a i i b i 1 ai b i 再根据复数相等的充要条件得a 1 b 1 4 201

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论