




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 微积分在几何上有两个基本问题 1 如何确定曲线上一点处切线的斜率 2 如何求曲线下方 曲边梯形 的面积 直线 几条线段连成的折线 曲线 知识回顾 2 用 以直代曲 解决问题的思想和具体操作过程 分割 以直代曲 作和 逼近 课题 定积分 3 求由连续曲线y f x 对应的曲边梯形面积的方法 2 以直代曲 任取xi xi 1 xi 第i个小曲边梯形的面积用高为f xi 宽为dx的小矩形面积f xi dx近似地去代替 4 逼近 所求曲边梯形的面积s为 3 作和 取n个小矩形面积的和作为曲边梯形面积s的近似值 xi 1 xi xi 1 分割 在区间 a b 上等间隔地插入n 1个点 将它等分成n个小区间 每个小区间宽度 x 4 如果当n 时 sn就无限接近于某个常数 这个常数为函数f x 在区间 a b 上的定积分 记作 从求曲边梯形面积s的过程中可以看出 通过 四个步骤 分割 以直代曲 求和 逼近 课题 定积分 5 定积分的定义 一般地 设函数f x 在区间 a b 上有定义 将区间 a b 等分成n个小区间 每个小区的长度为 在每个小区间上取一点 依次为x1 x2 xi xn 作和如果无限趋近于0时 sn无限趋近于常数s 那么称常数s为函数f x 在区间 a b 上的定积分 记作 课题 定积分 6 定积分的相关名称 叫做积分号 f x dx 叫做被积表达式 f x 叫做被积函数 x 叫做积分变量 a 叫做积分下限 b 叫做积分上限 a b 叫做积分区间 积分下限 积分上限 7 1 由曲线y x2 1与直线x 1 x 3及x轴所围成的曲边梯形的面积 用定积分表示为 2 中 积分上限是 积分下限是 积分区间是 2 2 2 2 8 定积分的几何意义 曲线y f x 直线x a x b y 0所围成的曲边梯形的面积 9 当函数f x 0 x a b 时定积分几何意义 就是位于x轴下方的曲边梯形面积的相反数 10 当函数f x 在x a b 有正有负时 定积分几何意义 就是图中几个曲边图形面积的代数和 x轴上方面积取正号 x轴下方面积取负号 11 用定积分表示下列阴影部分面积 s s s 12 定积分的几何意义 在区间 a b 上曲线与x轴所围成图形面积的代数和 即x轴上方的面积减去x轴下方的面积 13 例 计算下列定积分 求定积分 只要理解被积函数和定积分的意义 并作出图形 即可解决 14 定积分的基本性质 性质1 性质2 15 定积分的基本性质 定积分关于积分区间具有可加性 性质3 16 小结 定积分的实质 特殊和式的逼近值 定积分的思想和方法 求近似以直 不变 代曲 变 取逼近 3 定积分的几何意义及简单应用 17 1 曲边梯形面积问题 2 变力作功问题 3 变速运动的距离问题 我们把这些问题从具体的问题中抽象出来 作为一个数学概念提出来就是今天要讲的定积分 由此我们可以给定积分的定义 它们都归结为 分割 近似求和 取逼近值 问题情境 18 注 定积分数值只与被积函数及积分区间 a b 有关 与积分变量记号无关 19 按定积分的定义 有 1 由连续曲线y f x f x 0 直线x a x b及x轴所围成的曲边梯形的面积为 2 设物体运动的速度v v t 则此物体在时间区间 a b 内运动的距离s为 3 设物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4.1免疫系统的组成与功能教学设计-2024-2025学年高二上学期生物人教版(2019)选择性必修1
- 2024年学年七年级语文下册 第一单元 理想信念 第1课《扬起理想的风帆》说课稿2 新疆教育版
- 农产品嫁接种苗技术服务合同7篇
- 2025年人防工程防护(化)设备供应及安装合同
- 转租合同安全协议书7篇
- 八年级历史下册 第三学习主题 建设中国特色社会主义 第9课《开放的中国走向世界》说课稿 川教版
- 4.4 世界主要气候类型 第1课时(新说课稿)2023-2024学年七年级上册地理(湘教版)
- 2024-2025学年八年级政治上册 第一单元 让爱驻我家 第一课 相亲相爱一家人 第1框《家 温馨的港湾》说课稿 鲁教版
- 四年级英语下册 Unit 4 Where is my car Part B第二课时说课稿1 人教PEP
- 全国人教版初中信息技术八年级下册第三单元第12课《验证多个点共线》说课稿
- 产品品质及售后无忧服务承诺书3篇
- 2025年第11个全国近视防控宣传教育月活动课件
- 二年级防溺水教案
- 游泳社会指导员专项理论考试复习题库汇总(附答案)
- 我不是完美小孩
- GB/T 18091-2015玻璃幕墙光热性能
- 2023年高考全国1卷理科数学和答案详解(word版本)
- 大学英语精读第三版第三册课文翻译
- 患者跌倒的预防及管理课件
- 医疗设备验收单
- 竞选大学心理委员ppt模板
评论
0/150
提交评论