江苏省东台中学高三数学一轮复习 专题一第五讲导数及其应用(作业).doc_第1页
江苏省东台中学高三数学一轮复习 专题一第五讲导数及其应用(作业).doc_第2页
江苏省东台中学高三数学一轮复习 专题一第五讲导数及其应用(作业).doc_第3页
江苏省东台中学高三数学一轮复习 专题一第五讲导数及其应用(作业).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题一 第五讲 导数及其应用班级_姓名_一、填空题:1如图所示,有一圆锥形容器,其底面半径等于圆锥的高,若以的速度向该容器注水,则水深时水面上升的速度为 2等比数列中,函数,则=_.3已知函数满足则函数的图象在处的切线方程为 4已知曲线上的一点则过点p的切线方程为 5若曲线在点处的切线与两个坐标围成的三角形的面积为18,则_.6若函数在区间上为减函数,在区间上为增函数,则实数的取值范围为 7关于的方程有三个不同的实数解,则的取值范围是 8设函数若恒成立,则实数的取值范围是 9已知函数,若不等式在上恒成立,则实数 的取值范围是 10已知函数直线若当时,函数的图象在直线的下方,则实数c的取值范围为 11函数在定义域内可导,若,且当时,设,则的大小关系为_.12设函数(n为正整数),则在0,1上的最大值为 二、解答题:13已知函数的导数为实数,(1)若在区间上的最小值、最大值分别为,求的值;(2)在(1)的条件下,求经过点且与曲线相切的直线的方程14已知函数()=ln(1+)-+,(0).(1)当=2时,求曲线=()在点(1,(1)处的切线方程;(2)求()的单调区间.15已知(1)求函数在上的最小值;(2)对一切恒成立,求实数的取值范围;(3)证明对一切,都有成立16已知,点a(s,f(s), b(t,f(t)(1)若,求函数的单调递增区间; (2)若函数的导函数满足:当|x|1时,有|恒成立,求函数的解析表达式;(3)若0ab,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论