高中数学 1.2.1等差数列的概念及通项公式1学案 北师大版必修5.doc_第1页
高中数学 1.2.1等差数列的概念及通项公式1学案 北师大版必修5.doc_第2页
高中数学 1.2.1等差数列的概念及通项公式1学案 北师大版必修5.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2等 差 数 列第1课时等差数列的概念及通项公式知能目标解读1.通过实例,理解等差数列的概念,并会用等差数列的概念判断一个数列是否为等差数列.2.探索并掌握等差数列的通项公式的求法.3.体会等差数列与一次函数的关系,能用函数的观点解决等差数列问题.4.掌握等差中项的定义,并能运用它们解决问题.5.能用等差数列的知识解决一些实际应用问题.重点难点点拨重点:等差数列的概念.难点:等差数列的通项公式及其运用.学习方法指导1.等差数列的定义(1)关于等差数列定义的理解,关键注意以下几个方面:如果一个数列,不是从第2项起,而是从第3项起或第4项起,每一项与它的前一项的差是同一个常数,那么这个数列不是等差数列.一个数列从第2项起,每一项与其前一项的差尽管等于常数,这个数列也不一定是等差数列,因为这些常数不一定相同,当这些常数不同时,此数列不是等差数列.求公差时,要注意相邻两项相减的顺序.d=an+1-an(nn+)或者d=an-an-1 (nn+且n2).(2)如何证明一个数列是等差数列?要证明一个数列是等差数列,根据等差数列的定义,只需证明对任意正整数n,an+1-an是同一个常数(或an-an-1 (n1)是同一个常数).这里所说的常数是指一个与n无关的常数.注意:判断一个数列是等差数列的定义式:an+1-an=d(d为常数).若证明一个数列不是等差数列,可举一个特例进行否定,也可以证明an+1-an或an-an-1 (n1)不是常数,而是一个与n有关的变数即可.2.等差数列的通项公式(1)通项公式的推导常用方法:方法一(叠加法):an是等差数列,an-an-1=d,an-1-an-2=d,an-2-an-3=d,a3-a2=d,a2-a1=d.将以上各式相加得:an-a1=(n-1)d,an=a1+(n-1)d.方法二(迭代法):an是等差数列,an=an-1+d=an-2+d+d=an-2+2d=an-3+3d=a1+(n-1)d.即an=a1+(n-1)d.方法三(逐差法):an是等差数列,则有an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+(a2-a1)+a1=a1+(n-1)d.注意:等差数列通项公式的推导方法是以后解决数列题的常用方法,应注意体会并应用.(2)通项公式的变形公式在等差数列an中,若m,nn+,则an=am+(n-m)d.推导如下:对任意的m,nn+,在等差数列中,有am=a1+(m-1)dan=a1+(n-1)d 由-得an-am=(n-m)d,an=am+(n-m)d.注意:将等差数列的通项公式an=a1+(n-1)d变形整理可得an=dn+a1-d,从函数角度来看,an=dn+(a1-d)是关于n的一次函数(d0时)或常数函数(d=0时),其图像是一条射线上一些间距相等的点,其中公差d是该射线所在直线的斜率,从上面的变形公式可以知道,d= (nm).(3)通项公式的应用利用通项公式可以求出首项与公差;可以由首项与公差求出等差数列中的任意一项;若某数为等差数列中的一项,可以利用通项公式求出项数.3.从函数角度研究等差数列的性质与图像由an=f(n)=a1+(n-1)d=dn+(a1-d),可知其图像是直线y=dx+(a1-d)上的一些等间隔的点,这些点的横坐标是些正整数,其中公差d是该直线的斜率,即自变量每增加1,函数值增加d.当d0时,an为递增数列,如图(甲)所示.当d0时,an是数列;当d=0时,an是数列;当d0时,an是数列.答案1.差同一个常数2.a与b的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论