用向量法求空间距离.ppt_第1页
用向量法求空间距离.ppt_第2页
用向量法求空间距离.ppt_第3页
用向量法求空间距离.ppt_第4页
用向量法求空间距离.ppt_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9 8距离用向量法求空间距离 上节课 我们学习了用立几的方法求距离 我们来简单回忆一下 点到平面的距离 直线到与它平行平面的距离 两个平行平面的距离 异面直线的距离 如何用向量法求解点到平面的距离呢 已知点P和面ABCD 用向量法求解就得构造向量 比如说 过P点作PH垂直平面并交平面于点H 则PH的长为所求 连AH 我们可以利用直角三角形AHP来求解PH 这样求解对吗 向量间的夹角范围是从0度到180度 而我们只要锐角 如果是钝角的话是不可能存在直角三角形中的 故应该为 可是怎么求呢 可以求解 可是呢 我们发现 垂直平面ABCD 我们可以理解成面ABCD的法向量 对点到距离的向量公式我们可以这样去理解 即点到平面的距离等于点和这个平面的任何一点所组成向量与此平面法向量的数量积的绝对值除于法向量的模 下面 我们用一个例题来理解一下 如何用向量来求点到平面的距离 例题1 四面体SABC中 三角形ABC是等腰三角形 AB BC 2a SA 3a 角ABC为120度角 SA垂直面ABC 求点A到面SBC的距离 这道题也是我们上一节课的例题 当时求解非常的麻烦 首先要找垂线 而找垂线我们要先找垂面 再做两垂直平面的垂线才找到 找到了垂线还要证明 证明完了还要通过一连串计算才把点到平面的距离求解出来 今天我们用向量法来求解 那么 我们来先想想步骤应该怎样 1 建立空间直角坐标系 并把相应点的坐标写出 2 把公式中所需要的向量写出或求出 3 套用公式 例题1 四面体SABC中 三角形ABC是等腰三角形 AB BC 2a SA 3a 角ABC为120度角 SA垂直面ABC 求点A到面SBC的距离 分析 我们首先要建立空间直角坐标系 建立坐标系 要使各个点的坐标简捷化 我们一般是观察有没有线面垂直的情况 有的话 那条线一般标为z轴 把面放在xoy的平面上 那么 请同学们思考 这道题应该怎么样来建立空间直角坐标系呢 以SA所在直线为z轴 以A为坐标原点建系 接下来我们就来写出各点的坐标 接下来我们要求面SBC的法向量了 一个平面的法向量有很多 只要满足上面的这个等式即可 为了计算的方便 我们通常会要相对简洁的数字组成的法向量 可以令z 1 则得到平面SBC的一个法向量了 接下来我们要做些什么呢 求点A到面SBC任一点的向量 同样 也是数字越简洁越好 接下来我们套用公式了 我们发现这样很快可以完成这道看似复杂无头绪的立几题 既然用向量法那么快能把点到面的距离求解出来 能不能把线面距离 面面距离 甚至是异面直线间的距离也转化成点面距离来求解呢 下面我们来看这么一道例题 例题2 已知在边长为的正中 E F分别为BC和AC的中点 PA垂直面ABC PA 2 设平面PFD过PF且与AE平行 交线段BC与点D 求AE与面PFD间的距离 分析 这道题也是我们上一节课的例题 当时我们解决这道题时 是先找经过AE且垂直于面PFD的一个垂面 再在AE上找一点做两垂面交线的垂线 这条垂线就是AE到面PFD的距离 求解过程麻烦 今天 我们用向量来求解的话 我们应该怎么样把线面距离转化成点面距离呢 由题意可知 AE平行于面PFD 也就是说 AE上每一点到面PFD的距离都相等 那么我们可以转化成点A或点E或AE上任一点到面PFD的距离 这样 我们就可以用上一道例题的解题思路来进行解答了 例题2 已知在边长为的正中 E F分别为BC和AC的中点 PA垂直面ABC PA 2 设平面PFD过PF且与AE平行 交线段BC与点D 求AE与面PFD间的距离 首先 我们建立空间直角坐标系 以PA为z轴 A为坐标原点 我们先把各点坐标写出 在求出面PFD的法向量 最后套用公式 既然可以用向量法来解决点面 线面的距离 那么是否可以用来解决两个平行平面间的距离和异面直线间的距离呢 在这里就要用到立体几何的思想 把两个平行平面间的距离转化成点面距离就行了 可是 异面直线间的距离又应该如何求解呢 请同学们思考 如何用向量法来求解异面直线间的距离呢 a b 我们可以观察到 两异面直线上任意两点间的连线AB在两异面直线法向量上的射影d就是两异面直线间的距离 d 接下来我们同样来看看上一节课讲解异面直线距离时用的那道例题 看看用向量法是如何求解的 正方体中 棱长为1 求异面直线AC和的距离 首先我们建立空间直角坐标系 求出两异面直线的法向量 则两异面直线间的距离d为 经过了上面几道例题 我们已经熟悉并掌握了用向量法求空间距离的知识了 接下来请同学们完成下面的练习 同样也是用向量法解决 Ex1 四面体ABCD中 DAC BAC BAD 60 AC AD 2 AB 3 求点C到平面ABD的距离 Ex2 已知正方体ABCD A1B1C1D1的棱长为a 求体对角线BD1与面对角线B1C的距离 今天我们学习了用向量法求空间距离这个知识 其实 向量法就是将空间元素的位置关系转化为数量关系 用向量法求空间距离重在 转化 上 即将空间距离转化成为平面距离 并进一步转化为向量的长度问题 课后 请同学们再次思考 用向量法解决空间距离的本质是什么 既然我们可以用向量来就解决空间距离看似很难的立体几何问题 那我们可不可以用向量来解决立体几何中的平行和垂直问题呢 这将是我们下一节课的内容 请同学们认真的思考 同学们 下课 点到平面的距离 一点P到它在一个平面内的正射影的距离 即 垂线段PA即为点P到平面的距离 直线到与它平行平面的距离 一条直线上的任一点到与它平行的平面的距离 叫做这条直线到平面的距离 即是把直线到与它平行平面的距离转化为 点到平面的距离 两个平行平面的距离 两个平行平面的公垂线段的长度 叫做两个平行平面的距离 AB即为公垂线段 经过上节课的实践 公垂线段难找 找到公垂线段还要证明 证明后还要求公垂线段的长度 可见有三难 难找 难证 难求 立体几何真难 异面直线的距离 求异面直线的距离 我们同样是找它们的公垂线段公垂线段

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论