




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章 证明(三)总课时: 8 课时 第7课时 第三章 回顾与思考 (一)1、教学目标:能够理顺平行四边形、矩形、菱形、正方形之间的关系,熟练掌握这些四边形的判定和性质定理,并能够应用数学符号语言表述已知、求证、证明。掌握三角形中位线的定义和性质,能够推导出依次连接一个四边形四条边的中点所构成的四边形是什么特殊四边形。2、过程与方法:会熟练应用所学定理进行证明。体会证明中所运用的归类、类比、转化等数学思想,通过复习课对证明的必要性有进一步的认识。学会对证明方法的总结。3、情感态度与价值观:进一步培养学生的学习数学的积极性教学重点:特殊四边形的性质与判定及应用教学难点:特殊四边形的性质与判定及应用教 学 过 程第一环节 台下准备学生搜集整理资料活动内容:学生以小组为单位,以特殊四边形之间的关系为主线索,将本章节的定理进行整理,找到各知识点间的联系,进行串联。根据其中的知识点,选择合适的例题诠释。第二环节 台上展示学生创设线索展示成绩 (20分钟) 教师和学生一起回顾本章的主要内容。第一组展示 以“四边形判定”为线索内容:1.从四边形到正方形的递进式关系出发,以特殊四边形的判定定理为线索,进行复习回顾。学生总结的关系图:任意四边形 (1)两组对边平行 (2)两组对边相等 (3)一组对边平行且相等 (4)两组对角相等 (5)对角线互相平分 平行四边形 (1)一组邻边相等 (1)一个角是直角 (2)对角线互相垂直 (2)对角线相等 菱形 矩形 (1)一个角是直角 (1)一组邻边相等 (2)对角线相等 (2)对角线互相垂直 正方形这个环节,展示的同学与其他同学以“问答”的互动形式来完成探索、回顾的过程,共同完成以上的关系图。老师需要在这个环节进行一些补充:第一,定理的补充:四边形矩形;四边形菱形。即,有三个角是直角的四边形是矩形;四条边都相等四边形是菱形。强调这是建立在四边形基础上的判定定理,与前面建立在平行四边形基础上要有所区别。第二,要求学生对每个定理都应该能用数学符号语言表述已知、求证、证明,并且会应用定理证明其他命题。第三,总结出完整地理顺这些判定定理,首先要清楚四边形到正方形,是从一般到特殊的过程;其次要明白补充的条件是边角对角线的从外到内的过程。2.应用定理完成例题bfcdea例1.如图,已知ad是abc的角平分线,deac交ab于e,dfab交ac于f。求证:四边形aedf是菱形当abc满足什么条件时,四边形aedf是正方形?第二组展示 以“四边形性质定理”为线索内容:以特殊四边形的性质定理为线索,进行复习回顾。边角对角线平行四边形对边平行,对边相等对角相等对角线互相平分矩形对边平行,对边相等四个角都是直角对角线互相平分对角线相等菱形对边平行,四边相等对角相等对角线互相平分对角线互相垂直对角线平分一组对角正方形对边平行,四边相等四个角都是直角对角线互相平分对角线互相垂直对角线相等对角线平分一组对角说出性质的相同点、不同点和联系点。应用性质完成例题:dcbaefo例2.如图,在平行四边形abcd中,ac与bd相交于o点,点e、f在ac上,且bedf。求证:bedf。教师在这里将这道题进行开放处理:例2 如图,在平行四边形abcd中,ac与bd相交于o点,点e、f在ac上,求证:bedf或bedf。由学生来填加适当的条件,使得命题成立并证明。学生可以在证明的过程中找到针对条件最简单的判定定理。教师通过开放例题给学生传递的是一种总结证明方法的信息:根据特殊四边形的性质,学生应该能够体会到,在证明命题时有了很多新的工具。比如证明平行时,除了以前的同位角、内错角等,还先证明平行四边形;在证明边等时,除了全等,还可以分析所证线段是否为特殊四边形对边、矩形的对角线等。第二组展示 以“四边形性质定理”为线索内容:以特殊四边形的性质定理为线索,进行复习回顾。边角对角线平行四边形对边平行,对边相等对角相等对角线互相平分矩形对边平行,对边相等四个角都是直角对角线互相平分对角线相等菱形对边平行,四边相等对角相等对角线互相平分对角线互相垂直对角线平分一组对角正方形对边平行,四边相等四个角都是直角对角线互相平分对角线互相垂直对角线相等对角线平分一组对角dcbaefo例2.如图,在平行四边形abcd中,ac与bd相交于o点,点e、f在ac上,且bedf。求证:bedf。教师在这里将这道题进行开放处理:例2 如图,在平行四边形abcd中,ac与bd相交于o点,点e、f在ac上,_,求证:bedf或bedf。由学生来填加适当的条件,使得命题成立并证明。学生可以在证明的过程中找到针对条件最简单的判定定理。教师通过开放例题给学生传递的是一种总结证明方法的信息:根据特殊四边形的性质,学生应该能够体会到,在证明命题时有了很多新的工具。比如证明平行时,除了以前的同位角、内错角等,还先证明平行四边形;在证明边等时,除了全等,还可以分析所证线段是否为特殊四边形对边、矩形的对角线等。第三组展示 以“三角形的中位线和中线”为线索内容:这一章节中,学习了两个与三角形有关的定理,三角形中位线的定义和性质定理,直角三角形斜边中线的性质定理以及利用中线判定直角三角形的定理。ghfdaebc所以,这个环节上,老师选取了学生总结出的几道比较有代表性的例题,帮助学生加深对定理理解,增强恰当应用定理的意识。例3.如图,四边形abcd中,e、f、g、h分别是ab、cd、ac、bd的中点。求证:四边形egfh是平行四边形。例4.如图,已知:abc,cfab,beac,efbcmanm、n分别为bc、ef中点,求证:mnef。拓展例4,变化条件和结论如图,已知:abc中,m、n分别为bc、ef 中点,mnef,cfab,求证:beacefdcba例5.如图在abc中,bac90,d、e、f、分别是bc、ca、ab边的中点。求证:adef第四组展示 以“三角形中位线”为线索内容:老师选取学生作品当中最经典的一个问题情景:依次连接四边形各边中点所得到的图形,请添加合理的条件并提出问题,回答问题,简单口述理由。学生所提的问题应该囊括在以下几个问题:1.连结任意四边形各边中点得到什么图形?2.满足什么条件的四边形,连结其各边中点可以得到矩形?菱形?正方形?3.连结平行四边形、矩形、菱形、正方形、等腰梯形的各边中点又可以得到什么图形?最后教师要引导学生总结出:原四边形对角线的位置或数量关系,决定了所得新四边形邻边的位置和数量关系,依此来决定所得四边形的形状。教师还可以根据学情自己加入一些与探索类问题相关联的小问题。如:原来的四边形面积为a,这样依次内接n次得到的新四边形面积如何表示?对角线相等的四边形依次这样内接,得到的四边形有什么规律?原来对角线都是10,则第2n+1个图形的周长是多少?等等。第三环节 反思小结(师生共同总结5分钟)内容:课堂小结,让学生们互相提问、解答,吸收复习课上所回顾的内容,各自查漏补缺,将模糊不懂的理解透彻。第四环节、课外作业:内容:每小组完成一份第二课时的复习提纲。a层,所有学生都需要将课本复习题,逐个以知识点归类,并按兴趣搜集某知识点的拓展题目。b层,根据本章节的复习方式,结合证明(一)、(二)进行全面的回顾复习,完成第二课时的部分提纲,从给定的六个公理及有关概念的定义出发,通过逻辑推理证明,得到平行线、三角形和平行四边形等基本图形的有关结论,完成初中阶段几何局部的公理化体系。c组:熟背性质与判定 板书设计: 知识框架 图形教学反思:不要让学生感觉到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全无毒消杀培训内容课件
- 生产安全单位安全培训课件
- 农业碳汇项目碳排放监测与减排效果评估报告
- 理财课程解读课件
- 改造工程标段划分方案(3篇)
- 饭堂净水工程方案(3篇)
- 顶管工程测量方案(3篇)
- 安全文明施工内容培训课件
- 猫郑振铎课件简介
- 分包工程接口方案(3篇)
- saas货运管理办法
- excel操作考试题及答案
- 2025新疆生产建设兵团草湖项目区公安局面向社会招聘警务辅助人员考试参考试题及答案解析
- 2026届广东省广州市高三上学期8月调研考试语文试题(含答案)
- 江苏省南通市如皋市2025-2026学年高三上学期开学考试数学试卷
- 2025年高一语文开学第一课指导课件
- 2025年事业单位工勤技能-河北-河北计算机操作员二级(技师)历年参考题库含答案解析(5套)
- 社会资本测量方法-洞察及研究
- 无菌GMP基础知识培训课件
- 2025年江西省公安机关人民警察特殊职位招录考试(网络安全)历年参考题库含答案详解(5卷)
- 医院副高职称评审汇报
评论
0/150
提交评论