



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 二次函数回顾与思考(一)教学目标:知识与技能1能用表格、关系式、图象表示变量之间的二次函数关系,发展有条理地进行思考和语言表达的能力,并能根据具体问题,选取适当的方法表示变量之间的二次函数关系;2会作二次函数的图象,并能根据图象对二次函数的性质进行分析,并逐步积累研究一般函数性质的经验;3能根据二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。过程与方法使学生经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系;教学过程教学内容:知识要点的回顾、总结提出下列问题:1.你在哪些情况下见到过抛物线的“身影”?用语言或图来进行描述.2.你能用二次函数的知识解决哪些实际问题?与同伴交流.3.小结一下作二次函数图象的方法.4.二次函数的图象有哪些性质?如何确定它的开口方向,对称轴和顶点坐标?请用具体例子进行说明.5.用具体例子说明如何更恰当或更有效地利用二次函数的表达式,表格和图象刻画变量之间的关系.6.用自己的语言描述二次函数y=ax2+bx+c的图象与方程ax2+bx+c=0的根之间的关系.重要方法的回顾、总结提出下列问题: 通过二次函数的学习,你应该学什么?你学会了什么?1.理解二次函数的概念;2.会用描点法画出二次函数的图象;3.会用配方法和公式确定抛物线的开口方向,对称轴,顶点坐标;4.会用待定系数法求二次函数的解析式;5.能用二次函数的知识解决生活中的实际问题及简单的综合运用。复习二次函数的图象和性质教学内容: 1二次函数的图象和性质要点(一)形如(a0) 的二次函数(二)形如(a0) 的二次函数(三)形如( a0 ) 的二次函数(四) 形如(a 0) 的二次函数(五)二次函数y=ax2+bx+c(a0)的图象和性质2二次函数的图象和性质练习(1)抛物线y = x 2的开口向 ,对称轴是 ,顶点坐标是 ,图象过第 象限 ;(2)已知y = - nx 2 (n0) , 则图象 ( )(填“可能”或“不可能”)过点a(-2,3)。(3)抛物线y =x 2+3的开口向 ,对称轴是 ,顶点坐标是 ,是由抛物线y =x 2向 平移 个单位得到的;(4)已知(如图)抛物线y = ax 2+k的图象,则a 0,k 0;若图象过a (0,-2) 和b (2,0) ,则a = ,k = ;函数关系式是y = 。(5)抛物线 y = 2 (x -05 ) 2+1 的开口向 , 对称轴 , 顶点坐标是 (6)若抛物线y = a (x+m) 2+n开口向下,顶点在第四象限,则a 0, m 0, n 0。 二次函数关系式的三种表示方式 教学内容:二次函数关系式的三种表示方式:一般式、顶点式、两根式。1.若无论x取何实数,二次函数y=ax2+bx+c的值总为负,那么a、c应满足的条件是( )a.a0且b2-4ac0 b.a0且b2-4ac0c.a0且b2-4ac0 d.a 0,b0,c0,请画一个能反映这样特征的二次函数草图.课堂练习1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下平移4个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式.3、已知抛物线y=ax2+bx+c与x轴正、负半轴分别交于a、b两点,与y轴负半轴交于点c。若oa=4,ob=1,acb=90,求抛物线解析式。abxyoc第3题图 第4题图4、已知二次函数y=ax2-5x+c的图象如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办理开放式基金传真交易协议7篇
- 银行从业考试答题事项及答案解析
- 知识产权与保密协议书
- 2025煤矿劳动合同范本
- 母婴服务护理师考试题库及答案解析
- 隐私政策协议书
- 物业三级安全培训试题及答案解析
- 购房协议书离婚
- 海员培训安全实操考试题及答案解析
- 房东同意转租协议书
- DB32T3728-2020工业炉窑大气污染物排放标准
- 重大风险管控方案及措施客运站
- 基于STM32智能书桌设计
- 《北京市基本概况》课件
- 设备维保中的环境保护与能源管理
- 混合型脑性瘫痪的护理课件
- 眼科专业视野培训教材
- 青蓝工程教师成长档案
- 中建室内中庭墙面铝板、玻璃安装施工方案(改)
- 中秋佳节给客户的一封信(10篇)
- 学生心理健康档案表格
评论
0/150
提交评论