三角函数典型高考题精选精讲.doc_第1页
三角函数典型高考题精选精讲.doc_第2页
三角函数典型高考题精选精讲.doc_第3页
三角函数典型高考题精选精讲.doc_第4页
三角函数典型高考题精选精讲.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角函数典型考题归类解析三角函数是中学数学学习中重要的基本初等函数之一,与代数、几何有着密切的联系,是解决数学问题的一种有利工具.三角函数作为中学数学的基础内容,在高考试题中年年呈现,多数以中低档题出现,可以独立命题,也可以与其它知识综合渗透.下面就07年全国高考中解答题进行梳理归类,供读者学习时参考:三角函数是中学数学学习中重要的基本初等函数之一,与代数、几何有着密切的联系,是解决数学问题的一种有利工具.三角函数作为中学数学的基础内容,在高考试题中年年呈现,多数以中低档题出现,可以独立命题,也可以与其它知识综合渗透.下面就07年全国高考中解答题进行梳理归类,供读者学习时参考:1根据解析式研究函数性质例1(天津理)已知函数()求函数的最小正周期;()求函数在区间上的最小值和最大值【相关高考1】(湖南文)已知函数求:(I)函数的最小正周期;(II)函数的单调增区间【相关高考2】(湖南理)已知函数,(I)设是函数图象的一条对称轴,求的值(II)求函数的单调递增区间2根据函数性质确定函数解析式例2(江西) 如图,函数的图象与轴相交于点,且该函数的最小正周期为(1)求和的值;(2)已知点,点是该函数图象上一点,点是的中点,当,时,求的值【相关高考1】(辽宁)已知函数(其中),(I)求函数的值域; (II)(文)若函数的图象与直线的两个相邻交点间的距离为,求函数的单调增区间(理)若对任意的,函数,的图象与直线有且仅有两个不同的交点,试确定的值(不必证明),并求函数的单调增区间【相关高考2】(全国)在中,已知内角,边设内角,周长为(1)求函数的解析式和定义域;(2)求函数的最大值3三角函数求值例3(四川)已知cos=,cos(-),且00,函数f(x)=2sinx在上为增函数,那么的取值范围是_ 18、已知奇函数单调减函数,又,为锐角三角形内角,则( )A、f(cos) f(cos) B、f(sin) f(sin)C、f(sin)f(cos) D、f(sin) f(cos)19、函数的值域是 20、若,是第二象限角,则=_ 21、求函数的相位和初相。 22、已知函数f(x)=sin2x+sinx+a,(1)当f(x)=0有实数解时,求a的取值范围;(2)若xR,有1f(x),求a的取值范围。23、已知定义在区间-p,上的函数y=f(x)的图象关于直线x= -对称,当x-,时,函数f(x)=Asin(wx+j)(A0, w0,-j),其图象如图所示。(1)求函数y=f(x)在-p,的表达式;(2)求方程f(x)=的解。24、将函数的图像向右移个单位后,再作关于轴的对称变换得到的函数的图像,则可以是( )。A、 B、 C、 D、三角函数高考题分类归纳一 求值1、= = = 2、(1)(07全国) 是第四象限角,则(2)(09北京文)若,则 .(3)(09全国卷文)已知ABC中,则 .(4) 是第三象限角,则= = (5)(08浙江理)若则= .3(1) (07陕西) 已知则= .(2)(04全国文)设,若,则= . (3)(06福建)已知则= 4(07重庆)下列各式中,值为的是( )(A)(B)(C)(D)5. (1)(07福建) = (2)(06陕西)= 。(3) 。6.(1) 若sincos,则sin 2= (2)已知,则的值为 6 若 ,则=7. (08北京)若角的终边经过点,则= = 8(07浙江)已知,且,则tan9.若,则= 10.(09重庆文)下列关系式中正确的是( )A B C D(二)最值1.(09福建理)函数最小值是= 。2.(08全国二)函数的最大值为 。(08上海)函数f(x)sin x +sin(+x)的最大值是 (09江西理)若函数,则的最大值为 3.(08海南)函数的最小值为 最大值为 。4.(08湖南)函数在区间上的最大值是 5.(09上海理)函数的最小值是 .6(06年福建)已知函数在区间上的最小值是,则的最小值等于 7.(08辽宁)设,则函数的最小值为 (三)单调性1.(04天津)函数为增函数的区间是( ). A. B. C. D. 2.函数的一个单调增区间是( )ABCD3.函数的单调递增区间是( )A B C D4(07天津卷) 设函数,则( )A在区间上是增函数B在区间上是减函数C在区间上是增函数D在区间上是减函数5.函数的一个单调增区间是A B C D(四)周期性1(07江苏卷)下列函数中,周期为的是( )A B C D2.(08江苏)的最小正周期为,其中,则= 3.(04全国)函数的最小正周期是( ).4.(1)(04北京)函数的最小正周期是 .(2)(04江苏)函数的最小正周期为( ).5.(1)函数的最小正周期是 (2)(09江西文)函数的最小正周期为 (3). (08广东)函数的最小正周期是 (4)(04年北京卷.理9)函数的最小正周期是 .6.(09年广东文)函数是 A最小正周期为的奇函数 B. 最小正周期为的偶函数 C. 最小正周期为的奇函数 D. 最小正周期为的偶函数 7.(浙江卷2)函数的最小正周期是 .(五)对称性1.(08安徽)函数图像的对称轴方程可能是( )ABCD2下列函数中,图象关于直线对称的是( )A B C D3(07福建)函数的图象()关于点对称关于直线对称关于点对称关于直线对称4.(09全国)如果函数的图像关于点中心对称,那么的最小值为 ( ) (A) (B) (C) (D) (六)图象平移与变换1.(08福建)函数y=cosx(xR)的图象向左平移个单位后,得到函数y=g(x)的图象,则g(x)的解析式为 2.(08天津)把函数()的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是 3.(09山东)将函数的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是 4.(09湖南)将函数y=sinx的图象向左平移0 2的单位后,得到函数y=sin的图象,则等于 5要得到函数的图象,需将函数的图象向 平移 个单位 6(1)(07山东)要得到函数的图象,只需将函数的图象向 平移 个单位(2)(全国一8)为得到函数的图像,只需将函数的图像向 平移 个单位(3)为了得到函数的图象,可以将函数的图象向 平移 个单位长度7.(2009天津卷文)已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于y轴对称,则的一个值是( )A B C D(七)图象1(07宁夏、海南卷) 函数在区间的简图是()2(浙江卷7)在同一平面直角坐标系中,函数的图象和直线的交点个数是(A)0 (B)1 (C)2 (D)43(2006年四川卷)下列函数中,图象的一部分如右图所示的是( )(A) (B) (C) (D)4.(2009江苏卷)函数(为常数,)在闭区间上的图象如图所示,则= . 5.(2009宁夏海南卷文)已知函数的图像如图所示,则 。(八)解三角形1.(2009年广东卷文)已知中,的对边分别为若且,则 2.(2009湖南卷文)在锐角中,则的值等于 2 ,的取值范围为 . 3.(09福建) 已知锐角的面积为,则角的大小为 4、在ABC中,等于 。5已知ABC中,则的值为 (九)综合1. (04年天津)定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,则的值为 2(04年广东)函数f(x)是 ( )A周期为的偶函数 B周期为的奇函数 C 周期为2的偶函数 D.周期为2的奇函数 3( 09四川)已知函数,下面结论错误的是 A. 函数的最小正周期为2 B. 函数在区间0,上是增函数 C.函数的图象关于直线0对称 D. 函数是奇函数4(07安徽卷) 函数的图象为C, 如下结论中正确的是 图象C关于直线对称; 图象C关于点对称;函数)内是增函数;由的图象向右平移个单位长度可以得到图象C.5.(08广东卷)已知函数,则是( )A、最小正周期为的奇函数 B、最小正周期为的奇函数C、最小正周期为的偶函数 D、最小正周期为的偶函数(十)解答题1(05福建文)已知. ()求的值; ()求的值.2(06福建文)已知函数(I)求函数的最小正周期和单调增区间;(II)函数的图象可以由函数的图象经过怎样的变换得到?2(2006年辽宁卷)已知函数,.求:(I) 函数的最大值及取得最大值的自变量的集合;(II) 函数的单调增区间.3.(07福建文)在中,()求角的大小;()若边的长为,求边的长4. (08福建文)已知向量,且()求tanA的值;()求函数R)的值域.(08福建理)(已知向量m=(sinA,cosA),n=,mn1,且A为锐角.()求角A的大小;()求函数的值域.5.(2009福建卷文)已知函数其中, (I)若求的值; ()在(I)的条件下,若函数的图像的相邻两条对称轴之间的距离等于,求函数的解析式;并求最小正实数,使得函数的图像象左平移个单位所对应的函数是偶函数。(二)1.已知向量,记函数。(1)求函数 的最小正周期;(2)求函数的最大值,并求此时的值。2.(04年重庆卷.文理17)求函数的最小正周期和最小值;并写出该函数在的单调递增区间.3.(2009湖北卷文) 在锐角ABC中,a、b、c分别为角A、B、C所对的边,且()确定角C的大小: ()若c,且ABC的面积为,求ab的值。4.(2009陕西卷文) 已知函数(其中)的周期为,且图象上一个最低点为. ()求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论