



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市泉港三川中学八年级数学上册14.1.2 直角三角形的判定教案 华东师大版【教学内容】华师版数学(八年级)(上)第5354页,第14章第14.1节中“直角三角形的判定”部分.【教学目标】1、探索并掌握直角三角形判定方法.2、经历勾股定理的逆定理的探究过程,了解勾股定理的逆定理与勾股定理的互逆性.3、通过对勾股定理逆定理的探究,激发学生学习数学的兴趣和创新精神.4、通过三角形三边的数量关系来判断它是否为直角三角形,培养学生数形结合的思想.【设计意图】以上教学目标包括了本课时的三维目标:知识与技能、过程与方法、情感态度与价值观.【教学过程】一、创设情境,导入课题1、直角三角形有哪些性质?(从边、角两方面考虑)(1)有一个角是直角;(2)两个锐角的和为90(互余 );(3)两直角边的平方和等于斜边的平方. 反之,一个三角形满足什么条件,才能是直角三角形呢?2、一个三角形满足什么条件才能是直角三角形?(板书课题)(1)有一个角是直角的三角形是直角三角形; (板书)(2)有两个角的和为90的三角形是直角三角形; (板书)(3)如果一个三角形的三边a ,b ,c 满足a2 +b 2=c2 ,那么这个三角形是直角三角形?3、史料:古埃及人画直角. 据说,古埃及人曾用下面的方法画直角:他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处. 你知道这是什么道理吗?【设计意图】温故旧知,引入新课,利用史料激发学生探究数学的兴趣.二、动手实践,发现新知1、试用小塑料棒拼出三边长度分别为如下数据的三角形,猜想它们是些什么形状的三角形?(按角分类)(1)3,4,4 锐角三角形 (2)2,3,4 钝角三角形 (3)3,4,5 直角三角形 使用“几何画板”演示(拼图 / 还原 / 度量),加深学生对拼出三角形形状的认识.2、请比较上述每个三角形的两条较短边的平方和与最长边的平方之间的大小关系. (1)3,4,4 锐角三角形 3242 42(2)2,3,4 钝角三角形 2232 42(3)3,4,5 直角三角形 3242 = 523、从勾股定理到勾股定理的逆定理:反过来勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.(板书)勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.注意:(1)勾股定理与勾股定理的逆定理之间的关系;(2)“勾股定理的逆定理”严格的证明以后会学到;(3)“勾股定理的逆定理”的用途.4、使用“几何画板”演示:如果三角形的三边长a、b、c(这里ac,bc)满足a2+b2c2,那么这个三角形不是直角三角形.在abc中,设ab是三边中最长边,拖动点c,观察ac2+bc2、ab2的大小关系与acb的度数.结论:设ab是abc中三边中最长边,则ac2+bc2ab2 acb为锐角【设计意图】1、课本上要求学生根据三条线段的长度先画出三角形再判断三角形的形状,对于未学过尺规作图的学生来说有一定的难度,故改为先用小塑料棒拼出已知三边长度的三角形,再让学生度量三角形最大角的度数判断三角形形状,这样设计有利于培养学生的动手实践能力和合作交流意识.2、将课本上的三条线段的长度尽量改小的目的,便于学生实践操作.3、利用几何画板的拼接动感加深学生对勾股定理逆定理的探究过程的印象.三、范例点击,提高认知例1:判断由线段a,b,c组成的三角形是不是直角三角形? (1)a=7,b=25,c=24; (2) a=13,b=11,c=9分析:根据勾股定理的逆定理, 判断一个三角形是不是直角三角形, 只要看两条较短边长的平方和是否等于最长边长的平方.解:(1)最大边为25 a2+c2=72+242=49+576 =625 b2=252 =625 a2+c2= b 2 以7,25,24为边长的三角形是直角三角形. 数形结合思想(2)学生板演例2、已知:如图,四边形abcd中,b900,ab3,bc4,cd12,ad13.求四边形abcd的面积.(师生共同分析,教师板演)【设计意图】1、例1是本课时的重点,讲练相结合,由于补充了例2,所以将原课本上的例1中的3个小题减少为2题;2、例2属于“勾股定理”与“勾股定理的逆定理”想结合的题目,有助于培养学生综合解题能力,同时该题将求四边形的面积问题转化为求三角形的面积问题来处理,渗透了数学中的转化思想.四、随堂练习,巩固深化练习1、下面以a、b、c为边长的abc是不是直角三角形?如果是请指明哪一个角是直角?(1)a=6 b=8 c=10 .(2)a=12 b=8 c=15 .(3)a=8 b=6 c=5 .(4)a=1 b=2 c= .【设计意图】练习1与例1配套练习,放在例1结束后使用.练习2、满足下列条件abc,不是直角三角形的是 ( ) a、b2 = a2 c2 b、abc=345 c、c=ab d、ab c =345【设计意图】练习2是检测是否掌握直角三角形判定方法的好题,该题同时渗透了“方程思想”、“整体思想”、“特殊化思想”、“设k法”等数学思想方法,还涉及了解答“选择题”的一些技巧方法. 练习2放在例2结束后使用.练习3、解释“古埃及人画直角”的理论根据.abc解:如图,设每两个结的距离为a(a0),则ac=3a,bc=4a,ab=5a.【设计意图】1、首尾呼应的需要; 2、调节或控制上课时间的用途.五、课堂总结,发展潜能通过本节课的学习,同学们有哪些收获?1、 勾股定理的逆定理的内容;、判定一个三角形是直角三角形有哪些方法(从角、边两个方面来总结);、勾股定理与它的逆定理之间的关系.、数形结合的数学思想(通过三角形三边长间的数量关系来判断一个三角形是否为直角三角形).六、分层作业,个性发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台新兴产业合作协议书
- 苏州危化品运输合同范本
- 村委会签的安置合同协议
- 烟草公司毕业协议书范本
- 涂料机低价转让合同范本
- 股权投资扩股增资协议书
- 材料合同变更要补充协议
- 环卫一体化安装合同范本
- 电子版权合同及购买协议
- 瓷砖仓库合同协议书范本
- 2024年华东师大版七年级数学下册单元测试题及参考答案
- DB11∕T 1716-2020 城市轨道交通全自动运行线路试运行基本条件
- 高级中学综合楼建设项目需求调查与分析
- 系统动力学软件vensim中文教程及系统动力学模型
- 某铁矿水资源论证报告
- 设备维保的经验总结与分享
- 2024年天津港集团有限公司招聘笔试参考题库附带答案详解
- 个体诊所药品清单模板
- 人工智能在智能检验中的应用
- 前列腺癌的病例分析报告
- 《计算机总复习》课件
评论
0/150
提交评论