




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
构造齐次式解题5例在解题时,可能会遇到(有时需构造)各项次数相同的式子,我们称之为齐次式,下面举例说明齐次式的应用。1. 求三角函数值例1. 已知,值(04年湖北卷)分析:方程左端为齐次式,由已知条件可知 ,所以 原方程可化为,所以 又 所以 所以 将代入上式得例2. 已知,求的值。解:因为 ,所以所以 将待求式化为齐次式,则点评:以上两题都是典型题,将代换1,把所求式子化成只含有,的二次齐次分式。2. 证明不等式例3. 设x,y,z都是正数,并且,求证:。解:将代入所证不等式得又 所以 3. 求最值例4. 实数x,y满足,记,求和。解:由,代入即 (1)当x0时,;(2)当x0时,有,这是关于的一元二次方程,由得 解得 所以 。4. 处理解析几何问题例5. 椭圆中心在原点,对称轴为坐标轴,焦点在x轴上,离心率为,它与直线xy1交于P、Q两点,且OPOQ,求椭圆方程。解:设椭圆方程为将代入上式得到齐次方程整理得设显然 都存在因为 OPOQ所以 即 而可看成的两根所以 即 又 可得 由、联立解得,故所求方程为 。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色建筑幕墙劳务分包工程合同范本
- 2025东航大客户航空安全培训服务合同
- 肩关节运动康复新策略-洞察及研究
- 2025年新型防盗门窗产品销售代理协议
- 2025年度第三方保密协议与数据传输安全规范模板
- 2025年度地暖垫层施工质量保证与售后服务承包合同范本
- 2025版蔬菜种植基地土地流转承包合同
- 2025版食品添加剂研发委托生产合作协议
- 2025年新能源设备采购合同补充协议范本
- 2025年度山地草场使用权流转合同
- 露天矿山危险源辨识(汇总)
- 放射科质控汇报
- GB/T 31091-2014煤场管理通用技术要求
- GB/T 24218.1-2009纺织品非织造布试验方法第1部分:单位面积质量的测定
- 万东GFS型高频高压发生装置维修手册
- 公寓de全人物攻略本为个人爱好而制成如需转载注明信息
- 企业经营沙盘模拟实训指导书
- 汉密尔顿抑郁量表17项
- 《现代物流管理》第一章-导论(课用)
- 智能制造生产线运营与维护课件完整版
- 树木清障专项施工方案
评论
0/150
提交评论