Unit14limitsandtolerances.doc_第1页
Unit14limitsandtolerances.doc_第2页
Unit14limitsandtolerances.doc_第3页
Unit14limitsandtolerances.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Limits and TolerancesDimensioning The design of a machine includes many factors other than those of determining the loads and stresses and selecting the proper materials. Before construction or manufacture can begin, it is necessary to have complete assembly and detail drawings to convey all necessary information to the shop men. The designer frequently is called upon to check the drawings before they are sent to the shop. Much experience and familiarity with manufacturing processes are needed before one can become conversant with all phases of production drawings. 1 Drawings should be carefully checked to see that the dimensioning is done in a manner that will be most convenient and understandable to the production departments. It is obvious that a drawing should be made in such a way that it has one and only one interpretation. In particular, shop personnel should not be required to make trigonometric or other involved calculations before the production machines can be set up. 2Dimensioning is an involved subject and long experience is required for its mastery. 3Tolerances must be placed on the dimensions of a drawing to limit the permissible variations in size because it is impossible to manufacture a part exactly to a given dimension. Although small tolerances give higher quality work and a better operating mechanism, the cost of manufacture increases rapidly as the tolerances are reduced, as indicated by the typical curve of Fig 14.1. It is therefore important that the tolerances be specified at the largest values that the operating or functional considerations permit. Tolerances may be either unilateral or bilateral. In unilateral dimensioning, one tolerance is zero, and all the variations are given by the other tolerance. In bilateral dimensioning, a mean dimension is used which extends to the midpoint of the tolerance zone with equal plus and minus variations extending each way from this dimension. The development of production processes for large-volume manufacture at low cost has been largely dependent upon interchangeability of component parts. Thus the designer must determine both the proper tolerances for the individual parts, and the correct amount of clearance or interference to permit assembly with the mating parts. The manner of placing tolerances on drawings depends somewhat on the kind of product or type of manufacturing process. If the tolerance on a dimension is not specifically stated, the drawing should contain a blanket note which gives the value of the tolerance for such dimensions. 4 However, some companies do not use blanket notes on the supposition that if each dimension is considered individually, wider tolerances than those called for in the note could probably be specified. 5 In any event it is very important that a drawing be free from ambiguities and be subject only to a single interpretation. Dimension and Tolerance In dimensioning a drawing, the numbers placed in the dimension lines represent dimension that are only approximate and do not represent any degree of accuracy unless so stated by the designer. 6 To specify a degree of accuracy, it is necessary to add tolerance figures to the dimension. Tolerance is the amount of variation permitted in the part or the total variation allowed in a given dimension. A shaft might have a nominal size of 2.5 in. (63.5 mm), but for practical reasons this figure could not be maintained in manufacturing without great cost. Hence, a certain tolerance would be added and, if a variation of0.003 in. (0.08 mm) could be permitted, the dimension would be stated 2.5000.003 (63.50.08 mm). Dimensions given close tolerances mean that the part must fit properly with some other part. Both must be given tolerances in keeping with the allowance desired, the manufacturing processes available, and the minimum cost of production and assembly that will maximize profit. Generally speaking, the cost of a part goes up as the tolerance is decreased. If a part has several or more surfaces to be machined, the cost can be excessive when little deviation is allowed from the nominal size. Allowance, which is sometimes confused with tolerance, has an altogether different meaning. 7 It is the minimum clearance space intended between mating parts and represents the condition of tightest permissible fit. If a shaft, size , is to fit a hole of size l.500, the minimum size hole is l. 500 and the maximum size shaft is l. 498. Thus the allowance is 0. 002 and the maximum clearance is 0.008 as based on the minimum shaft size and maximum hole dimension. Tolerances may be either unilateral or bilateral. Unilateral tolerance means that any variation is made in only one direction from the nominal or basic dimension. Referring to the previous example, the hole is dimensioned l.500, which represents a unilateral tolerance. If the dimensions were given as l.5000.003, the tolerance would be bilateral; that is, it would vary both over and under the nominal dimension. The unilateral system permits changing the tolerance while still retaining the same allowance or type of fit. With the bilateral system, this is not possible without also changing the nominal size dimension of one or both of the two mating pats. In mass production, where mating parts must be interchangeable, unilateral tolerances are customary. To have an interference or force fit between mating parts, the tolerances must be such as to create a zero or negative allowance. Tolerances, Limits and Fits The drawing must be a true and complete statement of the designers requirements expressed in such a way that the part is convenient to manufacture. Every dimension necessary to define the product must be stated once only and not repeated in different views. Dimensions relating to one particular feature, such as the position and size of a hole, should, where possible, appear on the same view. There should be no more dimensions than are absolutely necessary, and no feature should be located by more than one dimension in any direction. 8 It may be necessary occasionally to give an auxiliary dimension for reference, possibly for inspection. When this is so, the dimension should be enclosed in a bracket and marked for reference. Such dimensions are not governed by general tolerances. 9 Dimensions that affect the function of the part should always be specified and not left as the sum or difference of other dimensions. If this is not done, the total permissible variation on that dimension will form the sum or difference of the other dimensions and their tolerances, and this will result in these tolerances having to be made unnecessarily tight. 10 The overall dimension should always appear. All dimensions must be governed by the general tolerance on the drawing unless otherwise stated. Usually, such a tolerance will be governed by the magnitude of the dimension. Specific tolerances must always be stated on dimensions affecting function or interchangeability. A system of tolerances is necessary to allow for the variations in accuracy that are bound to occur during manufacture, and still provide for interchangeability and correct function of the part. A tolerance is the difference in a dimension in order to allow for unavoidable imperfections in workmanship. The tolerance range will depend on the accuracy of the manufacturing organisation, the machining process and the magnitude of the dimension. The greater the tolerance range, the cheaper the manufacturing process. A bilateral tolerance is one where the tolerance range is disposed on both sides of the nominal dimension. A unilateral tolerance is one where the tolerance zone is on one side only of the nominal dimension, in which case the nominal dimension may form one of the limits. Limits are the extreme dimensions of the tolerance zone. For example, nominal dimension30 mm tolerance limits Fits depend on the relationship between the tolerance zones of two mating parts, and may be broadly classified into a clearance fit with positive allowance, a transition fit where the allowance may be either positive or negative (clearance or interference), an interference fit where the allowance is always negative.Type of Limits and Fits The ISO System of Limits and Fits, widely used in a number of leading metric countries, is considerably more complex than the ANSI system. In this system, each part has a basic size. Each limit of size of a part, high and low, is defined by its deviation from the basic size, the magnitude and sign being obtained by subtracting the basic size from the limit in question. The difference between the two limits of size of a part is called the tolerance, an absolute amount without sign. There are three classes of fits: 1) clearance fits, 2) transition fits (the assembly may have either clearance or interference), and 3) interference fits. Either a shaft-basis system or a hole-basis system may be used. For any given basic size, a range of tolerances and deviations may be specified with respect to the line of zero deviation, called the zero line. The tolerance is a function of the basic size and is designated by a number symbol, called the gradethus

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论