安师大教育集团五校联考(12月模考2017届).docx_第1页
安师大教育集团五校联考(12月模考2017届).docx_第2页
安师大教育集团五校联考(12月模考2017届).docx_第3页
安师大教育集团五校联考(12月模考2017届).docx_第4页
安师大教育集团五校联考(12月模考2017届).docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安师大教育集团五校联考(十二月模考)(2016)九年级数学试卷1、 选择题(共10小题,每小题4分,满分40分)1. 下列汽车标志中,既是轴对称图形有事中心对称图形的是( )2. 的坐标是( )A、 (-3,-2) B、(2,-3) C、(-2,-3) D、(-2,3)3. 抛物线可以由抛物线平移得到,则下列平移过程正确的是( )A 先向左平移2个单位,再向上平移3个单位 B先向左平移2个单位,再向下平移3个单位 C先向右平移2个单位,再向下平移3个单位 D先向右平移2个单位,再向上平移3个单位4. 如图,ABC内接于O,AB=BC,ABC=120,AD为O的直径,AD=6,那么BD的值为( )A、3 B、 C、 D、25. 如图所示,在正方形ABCD中,ABE经旋转,可与CBF重合,AE交FC于点M,以下结论正确的是A、BE=CE B、FM=MC C、AMFC D、BFCF 第4题图 第5题图 第7题图 第8题图6. 已知是关于的方程的两个不相等的实数根,且满足,则m的值是( )A、3或-1 B、3 C、1 D、-3或17. 如图,在44的正方形网格中,每个小正方形的边长为1,若将AOC绕点O顺时针旋转90得到BOD,则的长为()A B6 C3 D1.58.如图,二次函数(a0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC则下列结论:abc0;0;acb+1=0;OAOB= 其中正确结论的个数是() A. 4 B. 3 C .2 D. 19. 如图,在平面直角坐标系xOy中,半径为2的P的圆心P的坐标为(-3,0),将P沿x轴正方向平移,使P与y轴相切,则平移的距离为()A、1 B、1或5 C、3 D、510.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与O相切于E,F,G三点,过点D作O的切线BC于点M,切点为N,则DM的长为()A、 B、 C、 D、 第9题图 第10题图 第13题图 第14题图 二、填空题(每小题5分,满分20分)11.直角三角形的斜边为10cm,一条直角边长为8cm,则这个直角三角形的外接圆与内切圆的面积之比是 。12.一个底面直径是80cm。母线长为90cm的圆锥的侧面展开图的圆心角的度数为 。13.如图,在O内接五边形ABCDE中,CAD=38,则B+E= 。14. 如图,四边形ABCD是矩形纸片,AB=2对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G有如下结论: ABN=60; AM=1; QN=; BMG是等边三角形;P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是 其中正确结论的序号是3、 (本大题共两小题,每小题8分,满分16分) 15. 解方程: (1) (2) 16. 抛物线平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式。四、(本大题2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC(格点是网格线的交点)(1)先将ABC竖直向上平移6份单位,再水平向右平移3个单位得到,请画出;(2)将绕点顺时针旋转90,得,请画出;(3)线段变换到的过程中扫过区域的面积为18.已知O半径为7cm,O内一点P,OP=5cm,过点P的弦有无数条。(1) 求经过点P的最短弦长和最长弦长;(2) 求过点P的所有弦中弦长为整数的有多少条?并说明理由。五、(本大题共2小题,每小题10分,共20分)19.已知关于x的一元二次方程:(1) 是判断原方程根的情况;(2) 若抛物线与x轴交于A,B两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值,请说明理由。20.如图,在四边形ABCD中,ABC=90,ADBC,AD=,以对角线BD为直径的O与CD相切于点D,与BC交于点E,ABD=30,求图中阴影部分的面积(不取近似值)六、(本题满分12分)21.某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1x10):为了便于调控,此工厂每天只生产一个档次的产品当生产质量档次为x的产品时,当天的利润为y万元(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值七、(本题满分12分)22.如图,半径为8,圆心角为n的扇形面积是,由弧长,得。通过观察,我们发现类似于。类比扇形,我们探索扇环(如图,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用(1)设扇环的面积为,的长为,的长为,线段AD的长为h(即两个同心圆半径R与r的差)类比,用含,h的代数式表示,并证明;(2)用一段长为40m的篱笆围成一个如图所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?八、(本题满分14分)23、 已知二次函数。(1) 当b=2,c=3时,求二次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论