2020届高考数学 专题十二 数列求和精准培优专练 文.docx_第1页
2020届高考数学 专题十二 数列求和精准培优专练 文.docx_第2页
2020届高考数学 专题十二 数列求和精准培优专练 文.docx_第3页
2020届高考数学 专题十二 数列求和精准培优专练 文.docx_第4页
2020届高考数学 专题十二 数列求和精准培优专练 文.docx_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

培优点十二 数列求和一、分组求和法例1:设公差不为的等差数列的前项和为,且,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1)由题意,可求得,公差为,即,解得(舍)或,所以,(2)二、裂项相消法例2:设数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1),是公比为的等比数列,又,解得,是以为首项,公比为的等比数列,通项公式为(2),数列的前项和三、错位相减法例3:在数列中,有,;在数列中,有前项和(1)求数列和的通项公式;(2)求数列的前项和【答案】(1),;(2)【解析】(1)由已知得数列为首项为,公比为的等比数列,在数列中,当时,有,当时,上式也成立,所以(2),两式相减有,对点增分集训一、选择题1已知各项不为的等差数列满足,则前项和()ABCD【答案】C【解析】由题意可得:,则2已知递增的等比数列的前项和为,若成等差数列,且,()ABCD【答案】C【解析】因为成等差数列,所以,即,化简得,解得(舍)或,又,所以,3设数列是首项为,公差为的等差数列,为其前项和,若成等比数列,则()ABCD【答案】A【解析】成等比数列,即,解得,4已知等比数列的各项均为正数,且,成等差数列,令它的前项和为,则()ABCD【答案】A【解析】设公比为,由,成等差数列,可得,所以,则,解(舍去)或所以故选A5数列按如下规律排列,则它的前项和()ABCD【答案】A【解析】观察数列发现它的通项公式为,两式相减可得,6数列的通项公式为,则数列的前项和()ABCD【答案】B【解析】由题意得,数列的通项公式为,所以数列的前项和7已知数列的前项和为,当时,则的值为()ABCD【答案】C【解析】当时,故,由得,即,所以,故选C8已知等差数列中,则使成立的最大的值为()ABCD【答案】B【解析】设等差数列的公差为,则,由,解得,又在数列中为整数,最大的值为故选B二、填空题9已知数列的通项公式为,则它的前项和_【答案】【解析】数列的通项公式为,10等差数列中,则数列的前项和为_【答案】【解析】在等差数列中,可得,所以数列的公差,所以,则数列的前项和11已知数列中,前项和为若,则数列的前项和为_【答案】【解析】因为,所以所以,又,所以是首项为,公差为的等差数列,则,所以,又也满足,所以,所以所以数列的前项和为12等比数列的前项和,则数列的前项和_【答案】【解析】当时,符合通项公式,所以有,可有,两式相减可得,所以三、解答题13已知数列的各项均为正数,对任意,它的前项和满足,并且,成等比数列(1)求数列的通项公式;(2)设,为数列的前项和,求【答案】(1),;(2)【解析】(1)依题意,当时,有,解得或,对任意,有,当时,有,两式相减并整理得,而数列的各项均为正数,当时,此时成立;当时,此时舍去,(2)14已知公差不为零的等差数列满足,且,成等比数列(1)求数列的通项公式;(2)若,且数列的前项和为,求证:【答案】(1);(2)证明见解析【解析】(1)设等差数列的首项为,公差为()由题意得,则,化简得,解得,所以(2)证明:,所以15在等比数列与等差数列中,(1)求数列与数列的通项公式;(2)若,求数列的前项和【答案】(1),;(2)【解析】(1)设等比数列的公比为,等差数列的公差为,由,可得,解得,(2)由(1)知:,16已知数列的前项和为(1)求这数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论