全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
222降次-解一元二次方程(第五课时)22.2.4 一元二次方程的根与系数的关系随堂检测1、已知一元二次方程的两根为、,则_2、关于的一元二次方程的两个实数根分别为1和2,则_,_3、一元二次方程的两实数根相等,则的值为( )A B或 C D或4、已知方程的两个根为、,求的值.典例分析已知关于的一元二次方程有两个实数根和(1)求实数的取值范围;(2)当时,求的值(提示:如果、是一元二次方程的两根,那么有,)分析:本题综合考查了一元二次方程根的判别式和根与系数的关系,特别是第(2)问中,所求的值一定须在一元二次方程有根的大前提下才有意义.这一点是同学们常常容易忽略出错的地方.解:(1)一元二次方程有两个实数根,.(2)当时,即,或.当时,依据一元二次方程根与系数的关系可得,.又由(1)一元二次方程有两个实数根时的取值范围是,不成立,故无解;当时,,方程有两个相等的实数根,.综上所述,当时,.课下作业拓展提高1、关于的方程的两根同为负数,则( )A且 B且C且 D且2、若关于的一元二次方程的两个实数根分别是,且满足.则的值为( )A、1或 B、1 C、 D、不存在(注意:的值不仅须满足,更须在一元二次方程有根的大前提下才有意义,即的值必须使得才可以.)3、已知、是方程的两实数根,求的值.4、已知关于的方程的一个根是另一个根的2倍,求的值.5、已知,是关于的方程的两个实数根(1)求,的值;(2)若,是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值体验中考1、(2009年,河北)已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是( )A B3 C6 D9(提示:如果直接解方程,可以得到直角三角形的两条直角边的长,再运用勾股定理求出直角三角形的斜边长.但由于方程的两根是无理数,计算十分麻烦.因此应充分利用一元二次方程根与系数的关系进行简便求解.)2、(2008年,黄石)已知是关于的一元二次方程的两个实数根,则式子的值是( )A B C D参考答案:随堂检测1、. 依据一元二次方程根与系数的关系可得.2、3,2 依据一元二次方程根与系数的关系可得,.3、B. ,或,故选B.4、解:由一元二次方程根与系数的关系可得:,.课下作业拓展提高1、A. 由一元二次方程根与系数的关系可得:,当方程的两根同为负数时,且,故选A.2、C. 由一元二次方程根与系数的关系可得:,解得,.当时,此时方程无实数根,故不合题意,舍去.当时,故 符合题意.综上所述,.故选C.3、解:由一元二次方程根与系数的关系可得:,.4、解:设方程的两根为、,且不妨设.则由一元二次方程根与系数的关系可得:,代入,得,.5、解:(1)原方程变为:,即,(2)直角三角形的面积为=,当且m2时,以x1,x2为两直角边长的直角三角形的面积最大,最大面积为或体验中考1、B. 设和是方程的两个根,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学术研究诚信与行为规范承诺书(3篇)
- 环境绿化美化达标承诺书7篇
- 幼儿园心理健康课程设置与教学方案
- 企业品牌宣传策划方案模版(含媒介策略)
- 梦想的力量与勇气-想象作文(7篇)
- 节能减排生态责任承诺书(4篇)
- 债务偿还企业承诺书9篇范文
- 绿色环保产品推广承诺书7篇
- 工贸企业危险化学品安全使用与管理考核(2024年11月)
- 工贸企业生产安全应急预案考核(2024年10月)
- 《创伤性休克》课件
- 湖北省随州市随县2024-2025学年上学期期末测试题九年级物理试题
- 人教版七年级上册地理期末复习知识点提纲
- 空压机维护保养协议书范本
- 安徽省合肥市蜀山区2024-2025学年七年级(上)期末数学试卷(无答案)
- 第六单元课外古诗词诵读《南安军》说课稿 2023-2024学年统编版语文九年级下册
- 食堂2023年工作总结及2024年工作计划(汇报课件)
- 机器学习课件周志华Chap08集成学习
- 殡仪馆鲜花采购投标方案
- T-GDWCA 0035-2018 HDMI 连接线标准规范
- 面板堆石坝面板滑模结构设计
评论
0/150
提交评论