


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全品中考网 221 一元二次方程学习目标: 了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目 1通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义 2一元二次方程的一般形式及其有关概念 3解决一些概念性的题目 4通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情重难点关键 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题 难点(关键):通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念【预习内容】(阅读教材第25至26页,并完成预习内容。)问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m,则上部高_,得方程 _整理得 _ x问题2 如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。如果要制作的无盖方盒的底面积为3600c,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为_,宽为_.得方程_整理得 _ 问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为_设应邀请x个队参赛,每个队要与其他_个队各赛1场,所以全部比赛共_场。列方程_化简整理得 _ 请口答下面问题: (1)方程中未知数的个数各是多少?_ (2)它们最高次数分别是几次?_方程的共同特点是: 这些方程的两边都是_,只含有_未知数(一元),并且未知数的最高次数是_(二次)的方程.1.一元二次方程:_.2. 一元二次方程的一般形式:_一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式其中ax2是_,_是二次项系数;bx是_,_是一次项系数;_是常数项。(注意:二次项系数、一次项系数、常数项都要包含它前面的符号。二次项系数是一个重要条件,不能漏掉。)3. 例 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项【课堂活动】活动1 预习反馈、概念明确活动2 概念应用 课堂训练例1:判断下列方程是否为一元二次方程:1. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、及常数项: 5x2-1=4x 4x2=81 4x(x+2)=25 (3x-2)(x+1)=8x-32.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:4个完全相同的正方形的面积之和是25,求正方形的边长x; 一个长方形的长比宽多2,面积是100,求长方形的长x;把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x。3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程活动3 归纳小结一元二次方程: 1. 概念 2.一般形式ax2+bx+c=0(a0)【课后巩固】1在下列方程中,一元二次方程有_ 3x2+7=0 ax2+bx+c=0 (x-2)(x+5)=x2-1 3x2-=02. 方程2x2=3(x-6)化为一般式后二次项系数、一次项系数和常数项分别是( )A2,3,-6 B2,-3,18 C2,-3,6 D2,3,63px2-3x+p2-q=0是关于x的一元二次方程,则( ) Ap=1 Bp0 Cp0 Dp为任意实数4方程3x2-3=2x+1的二次项系数为_,一次项系数为 _,常数项为_5. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、及常数项: 3x2+1=6x 4x2+5x=81 x(x+5)=0 (2x-2)(x-1)=0 x(x+5)=5x-10 (3x-2)(x+1)=x(2x-1)6当a_时,关于x的方程a(x2+x)=x2-(x+1)是一元二次方程.7若关于x的方程(m+3)+(m-5)x+5=0是一元二次方程,试求m的值,并计算这个方程的各项系数之和8关于x的方程(m2-m)xm+1+3x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版施工环境保护工程设计合作协议范本
- 2025版自驾租赁汽车合同附加车辆清洗保养服务
- 2025版时尚简约内墙抹灰工程合同
- 2025版淘宝电商运营人才招聘与管理合同
- 2025版砂石料采购合同范本及供应商履约能力评估与考核
- 2025版离婚协议书专业起草与子女抚养费用约定合同
- 2025年墙纸产品售后服务与客户满意度调查合同
- 贵州省开阳县2025年上半年公开招聘村务工作者试题含答案分析
- 贵州省惠水县2025年上半年事业单位公开遴选试题含答案分析
- 2025版农业机械设备配件供应合同
- 托管老师安全知识培训课件
- 2025年医疗器械网络销售监督管理办法培训试题及答案
- 2024年长沙市公安局招聘警务辅助人员真题
- 待灭菌物品的装载
- 《急性肺栓塞诊断和治疗指南2025》解读
- 辽宁沈阳出版发行集团有限公司及所属企业招聘笔试题库及答案详解(新)
- 2025年中级注册安全工程师《安全生产法律法规》十年真题考点
- 2025年职业卫生技术服务专业技术人员考试(放射卫生检测与评价)历年参考题库含答案详解(5套)
- 《健康体检超声检查质量控制专家建议(2025版)》解读课件
- 2025至2030年中国小信号分立器件行业市场运行现状及投资战略研究报告
- 老年人基础照护护理协助协助老人床椅转移
评论
0/150
提交评论