




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题检测(二十三) 坐标系与参数方程大题专攻强化练1在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为4cos ,.(1)求半圆C的参数方程;(2)若半圆C与圆D:(x5)2(y)2m(m是常数,m0)相切,试求切点的直角坐标解:(1)半圆C的普通方程为(x2)2y24(0y2),则半圆C的参数方程为(t为参数,0t)(2)C,D的圆心坐标分别为(2,0),(5,),于是直线CD的斜率k.由于切点必在两个圆心的连线上,故切点对应的参数t满足tan t,t,所以切点的直角坐标为,即(2,1)2(2019全国卷) 如图,在极坐标系Ox中,A(2,0),B,C,D(2,),弧,所在圆的圆心分别是(1,0),(1,),曲线M1是弧,曲线M2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|,求P的极坐标解:(1)由题设可得,弧,所在圆的极坐标方程分别为2cos ,2sin ,2cos .所以M1的极坐标方程为2cos ,M2的极坐标方程为2sin ,M3的极坐标方程为2cos .(2)设P(,),由题设及(1)知若0 ,则2cos ,解得;若 ,则2sin ,解得或;若 ,则2cos ,解得.综上,P的极坐标为或或或. 3.(2019福州市第一学期抽测)在平面直角坐标系xOy中,直线l的参数方程为(t为参数,为l的倾斜角),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线E的极坐标方程为4sin ,直线,(R)与曲线E分别交于不同于极点O的三点A,B,C.(1)若,求证:|OB|OC|OA|;(2)当时,直线l过B,C两点,求y0与的值解:(1)证明:依题意,|OA|4sin |,|OB|,|OC|,|OB|OC|4sin4sin4sin |OA|.(2)当时,直线与曲线E的交点B的极坐标为,直线与曲线E的交点C的极坐标为,从而,B,C两点的直角坐标分别为B(,1),C(0,4),直线l的方程为yx4,y01,.4(2019江西八所重点中学联考)在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线M的极坐标方程为2cos ,若极坐标系内异于O的三点A(1,),B,C(1,2,30)都在曲线M上(1)求证:123;(2)若过B,C两点的直线的参数方程为(t为参数),求四边形OBAC的面积解:(1)证明:由题意得12cos ,22cos,32cos,则232cos2cos2 cos 1.(2)由曲线M的极坐标方程得曲线M的直角坐标方程为x2y22x0,将直线BC的参数方程代入曲线M的直角坐标方程得t2t0,解得t10,t2,在平面直角坐标中,B,C(2,0),则21,32,1.四边形OBAC的面积SSAOBSAOC12 sin13sin.5在平面直角坐标系xOy中,倾斜角为的直线l过点M(2,4)以原点O为极点,x轴的非负半轴为极轴建立极坐标系,且在两坐标系中长度单位相同,曲线C的极坐标方程为sin22cos .(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若直线l与C交于A,B两点,且|MA|MB|40,求倾斜角的值解:(1)因为倾斜角为的直线过点M(2,4),所以直线l的参数方程是(t是参数)因为曲线C的极坐标方程为sin22cos ,所以2sin22cos ,所以曲线C的直角坐标方程是y22x.(2)把直线的参数方程代入y22x,得t2sin2(2cos 8sin )t200,由题意知,0,设t1,t2为方程t2sin2(2cos 8sin )t200的两根,则t1t2,t1t2,根据直线参数方程的几何意义知|MA|MB|t1t2|40,故或,又(2cos 8sin )280sin20,所以.6(2019湖南省五市十校联考)在直角坐标系xOy中,直线l的参数方程为(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为cos.(1)求圆C的直角坐标方程;(2)过直线l上的点向圆C引切线,求切线长的最小值解:(1)由cos,得2cos sin ,x2y2xy0,即圆C的直角坐标方程为.(2)设l上任意一点P(t,t2),过P向圆C引切线,切点为Q,连接PC,CQ,圆C的圆心为C,半径r,|PQ|2,即切线长的最小值为2.7(2019石家庄市模拟(一)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为.(1)求曲线C的极坐标方程;(2)当0r2时,若曲线C与射线l交于A,B两点,求的取值范围解:(1)由题意知曲线C的普通方程为(x2)2y2r2,令xcos ,ysin ,化简得24cos 4r20.(2)法一:把代入曲线C的极坐标方程中,得224r20.令44(4r2)0,结合0r2,得3r24.方程的解1,2分别为点A,B的极径,122,124r20,.3r24,04r21,(2,)法二:射线l的参数方程为(t为参数,t0),将其代入曲线C的方程(x2)2y2r2中得,t22t4r20,令44(4r2)0结合0r2,得3r24,方程的解t1,t2分别为点A,B对应的参数,t1t22,t1t24r2,t10,t20,.3r24,04r21,(2,)8(2019洛阳市统考)在直角坐标系xOy中,曲线C1的参数方程为(t是参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)设曲线C2经过伸缩变换得到曲线C3,M(x,y)是曲线C3上任意一点,求点M到曲线C1的距离的最大值解:(1)根据消参可得曲线C1的普通方程为x2y50,2,232sin24,将代入可得:x24y24.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初中物理特岗教师招聘考试必-备知识点总结与模拟题集
- 2025年特岗教师招聘考试初中政治法律法规模拟题及答案
- 信息化教学课堂课件
- 2025年职业考试指南护士执业资格考进阶攻略篇
- 2025年大学英语四六级考试写作部分高分指南
- 2025年中国石油化工公司研发岗位笔试模拟题集
- 2025年机械工程师职业资格认证模拟试题集
- 2025年物资储备行业信息技术知识深度解析与模拟题
- 2025年炼钢工艺高级知识自测题及答案详解
- 2025年行政助理面试技巧与模拟题答案详解
- 意向金协议书范本
- 我的家乡日喀则(教学设计)-2024-2025学年湘艺版(2012)音乐四年级上册
- 机关公文写作课件
- 手术病例书写规范
- 对标一流-2025年国央企风控合规案例白皮书
- 《心律失常了解》课件
- 数字位移:重新思考数字化
- 四川省成都盐道街中学2025届高考考前模拟数学试题含解析
- 新北师大版二年级上册数学总复习课件
- 剧场技术管理与舞台监督考核试卷
- 建筑劳务公司合同
评论
0/150
提交评论