高中数学 3.1.1方程的根与函数的零点(2)同步讲练 新人教版必修1.doc_第1页
高中数学 3.1.1方程的根与函数的零点(2)同步讲练 新人教版必修1.doc_第2页
高中数学 3.1.1方程的根与函数的零点(2)同步讲练 新人教版必修1.doc_第3页
高中数学 3.1.1方程的根与函数的零点(2)同步讲练 新人教版必修1.doc_第4页
高中数学 3.1.1方程的根与函数的零点(2)同步讲练 新人教版必修1.doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:3.1.1方程的根与函数的零点 (2)精讲部分学习目标展示(1)掌握零点存在性定理并能应用(2)会零点存在性定理判定零点的存在性及零点的存在区间衔接性知识1. 函数零点的定义?函数零点与方程根有什么关系?2. 如何判断二次函数零点的个数?3. 求函数的零点,判断、 与的符号基础知识工具箱要点内容符号零点存在性定理如果函数的图象在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点.设在区间上连续,若,存在,使得 零点存在性定理的理解定理的前提条件有两个:i)函数的图象在区间上的图象是连续不断的一条曲线,ii)若函数满足定理的条件,则在内有零点,可能有一个零点,也可能有多个零点;若函数不满足定理的条件,则在内也可有零点零点存在性定理的推论如果函数的图象在区间上的图象是连续不断的一条曲线,有,并且在上是单调函数,那么函数在区间内有唯一的零点.函数的零点的个数的判断方法解方程法,方程的根的个数就是函数的零点的个数;如果方程的根不容易求解,则可通过函数与图象的交数判断函数零点的个数零点的分布(1) 函数在内有两个零点或(2) 函数在在内有且只有一个零点或或典例精讲剖析例1. 函数的零点所在的一个区间是 ( ) a b c d【解析】因为函数的图象是连续不断的一条曲线,又,所以,故函数的零点所在的一个区间是,选b.例2. 若是方程的解,则属于区间( )(a)(). (b)(). (c)() (d)()【解析】构造函数,则函数的图象是连续不断的一条曲线.又, ,所以,故的零点所在的一个区间是,即方程的解属于区间.选c注释:,例3. 求函数的零点的个数【解析】法1.,又函数在上的图象是连续不断的函数在区间内有零点而在其定义域内是增函数,所以函数只有一个零点法2. 函数的零点就是即的实数根记,在同一坐标系中画出与的图象,由图象可知,与的图象只有一个交点,所以函数只有一个零点例4. 函数在区间和内各有一个零点求实数的取值范围 解析:函数在区间和内各有一个零点,由二次函数的性质,知即,所以实数的取值范围为精练部分a类试题(普通班用)1. 方程与的根为,则所在区间为()a(2,1) b(1,0) c(0,1) d(1,2)答案c解析令,则,故选c2. 函数在以下哪个区间内一定有零点( ) a b c d答案 d解析因为的图象是一条连续不断的图象又,所以在一定有零点,选d3.函数的零点个数是 答案 2 【解析】 法1.方程的解为,方程的解为,所以函数有两个零点:与法2.画出函数的图象,它与轴有两个交点,所以函数有两个零点,填 2 4证明:函数在区间(2,3)上至少有一个零点证明:函数的定义域为r,函数f(x)的图像灾区间(2,3)上是连续的。又,f(2)f(3)0,函数f(x)在区间(2,3)上至少有一个零点。5已知关于x的二次方程的一根在区间内,另一根在区间内,求实数的取值范围.分析:设出二次方程对应的函数,可画出相应的示意图,然后利用函数零点的存在性定理可列不等式组求解.【解析】设则函数零点分别在区间和内,画出示意图,得.从而实数的取值范围是b类试题(3+3+4)(尖子班用)1. 方程与的根为,则所在区间为()a(2,1) b(1,0) c(0,1) d(1,2)答案c解析令,则,故选c2. 函数在以下哪个区间内一定有零点( ) a b c d答案 d【解析】因为的图象是一条连续不断的图象又,所以在一定有零点,选d3. 已知,则函数的零点的个数为 ( )a1 b2 c3 d4答案 b【解析】函数|的零点的个数就等于方程的解的个数,即函数与的图象交点的个数如图所示:故函数与的交点的个数为2,选b注释:的图象即为分段函数的图象;的图象即为分段函数的图象4. 函数的零点所在的区间是,则整数的值为_答案 2【解析】因为函数的图象是连续不断的一条曲线,又,所以,故函数的零点所在的一个区间是,所以整数的值为5. 函数的零点个数是 答案 2【解析】 法1.方程的解为,方程的解为,所以函数有两个零点:与,选c法2.画出函数的图象,它与轴有两个交点,所以函数有两个零点,填 2 6. 已知函数有且仅有两个零点,则实数的取值范围是 答案 【解析】分与两种情况,画出函数与函数的图象,由图知,当时,两个函数有两个交点,所以实数的取值范围是7. 证明:函数在区间(2,3)上至少有一个零点证明:函数的定义域为r,函数f(x)的图像灾区间(2,3)上是连续的。又,f(2)f(3)0,函数f(x)在区间(2,3)上至少有一个零点。8. 已知关于x的二次方程的一根在区间内,另一根在区间内,求实数的取值范围.分析:设出二次方程对应的函数,可画出相应的示意图,然后利用函数零点的存在性定理可列不等式组求解.【解析】设则函数零点分别在区间和内,画出示意图,得.从而实数的取值范围是9. 已知关于x的方程,是否存在实数,使(1)方程有一正一负两根;(2)方程的两根都大于1;(3)方程的一根大于1,一根小于1.【解析】(1)因为方程有一正一负两根,所以由根与系数的关系得,解得.即当时,方程有一正一负两根(2)当方程两根都大于1时,函数的大致图象如图(1)(2)所示,所以必须满足,或,不等式组无解所以不存在实数a,使方程的两根都大于1.(3)因为方程有一根大于1,一根小于1,函数的大致图象如图(3)(4)所示,所以必须满足或,解得.即当a0时,方程的一个根大于1,一个根小于1.10. 设函数(1)当时证明:函数在区间内存在唯一零点;(2)若当,不等式有解.求实数b的取值范围【解析】(1)由,得,所以函数在区间内存在零点又由二次函数的图象,可知在上单调递增从而函数在区间内存在唯一零点(2)由题意可知在区间上有解所以在区间上有解令,可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论