


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1. 如图,矩形中,为上的点,且,()求证:平面;()求证:平面;()求三棱锥的体积ABCDEFG解析:()证明:平面, 平面,则 又平面,则平面 ABCDEFG()证明:依题意可知:是中点平面,则,而是中点 在中,平面 ()解法一:平面,而平面 平面,平面 是中点,是中点且 平面, 中, 解法二: 2. E A B C F E1 A1 B1 C1 D1 D 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB/CD,AB=4, BC=CD=2, AA=2, E、E分别是棱AD、AA的中点. (1) 设F是棱AB的中点,证明:直线EE/平面FCC;(2) 证明:平面D1AC平面BB1C1C.证明:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,E A B C F E1 A1 B1 C1 D1 D F1连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB/CD,所以CDA1F1,A1F1CD为平行四边形,所以CF1/A1D,又因为E、E分别是棱AD、AA的中点,所以EE1/A1D,所以CF1/EE1,又因为平面FCC,平面FCC,所以直线EE/平面FCC.E A B C F E1 A1 B1 C1 D1 D (2)连接AC,在直棱柱中,CC1平面ABCD,AC平面ABCD,所以CC1AC,因为底面ABCD为等腰梯形,AB=4, BC=2, F是棱AB的中点,所以CF=CB=BF,BCF为正三角形,,ACF为等腰三角形,且所以ACBC, 又因为BC与CC1都在平面BB1C1C内且交于点C,所以AC平面BB1C1C,而平面D1AC,所以平面D1AC平面BB1C1C.3.如图所示,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD是正方形,AC与交于点O, (1)求证:AC平面SBD; (2)当点P在线段MN上移动时,试判断EP与AC的位置关系,并证明你的结论。解析:(1)底面ABCD是正方形,O为中心,ACBD 又SA=SC,ACSO,又SOBD=0,AC平面SBD (2)连接 又由(1)知,ACBD 且AC平面SBD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电信资源考试题库及答案
- 2025年广西医生人文考试题库及答案
- 专科生政治考试题及答案
- 肝炎护理学考试题及答案
- 锅炉水气化验考试试题及答案
- 吕梁焊工实操考试题库及答案
- 绿色园区品牌价值构建-洞察与解读
- 感控试题及答案2025年
- 2025年信息系统监理师考试冲刺阶段试题及答案
- 国际海事赔偿责任限额新发展及对我国航运法律体系的多维影响与应对策略研究
- 跌落机操作规程
- (高清版)DBJ33∕T 1319-2024 住宅小区供配电工程技术标准
- 中国人口研究专题报告-中国2025-2100年人口预测与政策建议
- 2025年家居服行业市场趋势分析报告
- 酒店餐饮服务礼仪培训课件
- 《中韩贸易竞争性和互补性分析》15000字(论文)
- 重庆红色之旅心得体会
- 2024年北京高中学生化学竞赛试卷
- 心内科人文关怀护理
- 医院培训课件:《预灌式抗凝剂皮下注射》
- 退耕还林转包合同模板(2篇)
评论
0/150
提交评论