




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
坐标系1平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换:的作用下,点P(x,y)对应到点P(x,y),称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换2极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系(2)极坐标极径:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为.极角:以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.极坐标:有序数对(,)叫做点M的极坐标,记为M(,)一般不作特殊说明时,我们认为0,可取任意实数3极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(,),则它们之间的关系为:1若点P的直角坐标为(3,),则点P的极坐标为_2圆5cos 5sin 的圆心的极坐标为_3在极坐标系中A,B两点间的距离为_4在极坐标系中,圆4sin 的圆心到直线(R)的距离是_考什么怎么考1求椭圆y21经过伸缩变换后的曲线方程2求双曲线C:x21经过:变换后所得曲线C的焦点坐标3将圆x2y21变换为椭圆1的一个伸缩变换公式为:求a,b的值 典题领悟在极坐标系下,已知圆O:cos sin 和直线l:sin(0,02)(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O的公共点的极坐标冲关演练1、将下列直角坐标方程与极坐标方程进行互化y24x;(R);.2、在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系已知点A的极坐标为,直线的极坐标方程为cosa,且点A在直线上,求a的值及直线的直角坐标方程3、圆心C的极坐标为,且圆C经过极点(1)求圆C的极坐标方程;(2)求过圆心C和圆与极轴交点(不是极点)的直线的极坐标方程4、已知圆O1和圆O2的极坐标方程分别为2,22cos2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程典题领悟1、在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|2、(2017全国卷)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为cos 4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|OP|16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为,点B在曲线C2上,求OAB面积的最大值冲关演练1、在直角坐标系中,曲线C1:(t为参数,t 0),其中0 0)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:4cos .(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为0,其中0满足tan 02,若曲线C1与C2的公共点都在C3上,求a.5(2018洛阳模拟)在直角坐标系xOy中,圆C的方程为x2(y2)24.以O为极点,x轴的非负半轴为极轴建立极坐标系(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2sin5,射 线OM:与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长6在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系曲线C的极坐标方程为cos1,M,N分别为C与x轴,y轴的交点(1)求C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程7(2018福建质检)在直角坐标系xOy中,曲线C1的普通方程为(x2)2y24,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:2sin ,曲线C3:(0),A(2,0)(1)把C1的普通方程化为极坐标方程;(2)设C3分别交C1,C2于点P,Q,求APQ的面积8(2018贵州适应性考试)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C1的极坐标方程为4cos ,曲线C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业酬金制服务合同范本
- 高档消费品买卖合同范本
- 高龄员工家属免责协议书
- 煤矿托管合同协议书范本
- 自动生鲜车购买合同范本
- 烘焙店加盟合同协议范本
- 深圳市拆迁协议合同模板
- 银行解除合同协议书范本
- 网店服装合伙人合同协议
- 煤矿股权出让协议书范本
- 阳江市阳东区区内选调教师笔试真题2024
- 2025年滁州市来安县招聘社区专职工作者考试笔试试题(含答案)
- 2025年湖南省株洲市石峰区事业单位教师招聘考试《教育基础知识》真题(附答案)
- 注册安全工程师课件辅导
- 校级名师示范课活动方案
- 支气管肺炎的说课
- 设备技改异动管理制度
- 食材配送供应商管理制度
- 大咯血的急救流程
- 2024年内蒙古阿拉善盟直事业单位专业人才引进真题
- 科创班考试题型及答案
评论
0/150
提交评论