王老师汇编-反比例函数习题.doc_第1页
王老师汇编-反比例函数习题.doc_第2页
王老师汇编-反比例函数习题.doc_第3页
王老师汇编-反比例函数习题.doc_第4页
王老师汇编-反比例函数习题.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反比例函数1下列函数中是反比例关系的有_(填序号)。 为常数,2已知 是,则函数的图象在 ( )A、一、三象限 B、二、四象限 C、一、四象限 D、三、四象限3函数与(k0)在同一坐标系内的图象可能是( )4如果与成反比例函数,且比例系数,则它的函数解析式是_,若时,则;5若A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数的图象上的点,且x10x2x3,则y1,y2,y3由小到大的顺序是 ;6在函数y=(k0)的图象上有三点A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1x20x3,则下列各式中,正确的是( ) Ay1y2y3 By3y2y1 Cy2y1y3 Dy3y1y27.若反比例函数的图象在每个象限内y随x的增大而减小,则k的值可以是( )A-1 B3 C0 D-38.下列函数中,其图象位于第一、三象限的有 ;在其图象所在象限内,y的值随x值的增大而增大的有 ; ; ; ;设有反比例函数,、为其图象上的两点,若时,则的取值范围是_9.已知函数,当x0时,函数图象在第 象限,y随x的增大而 10.已知反比例函数,当m 时,其图象在每个象限内y随x的增大而增大;11.若点A(7,y1)、B(5,y2)在双曲线上,则y1与y2的大小关系为 ;12.若点A(x1,y1)B(x2,y2)C(x3,y3)都在函数的图象上,且x10 x2 0时,y随x的增大而减小,则m的取值范围是 ;16.已知点P(2,y1),Q(3,y2)在函数的图象上,则y1与y2的大小关系为 ;若点M(-2,y1),N(-3,y2)在函数的图象上,则y1与y2的大小关系为 ;17.若A(x1,y1),B(x2,y2)在函数的图象上,则当x1,x2满足 时,y1 y2;18.一件工作甲单独做m小时完成,乙单独做n小时完成,则甲乙两人合做,完成需要 小时。19.已知A、B两地相距100km,甲骑自行车由A往B出发,1小时30分钟后,乙开着摩托车也由A往B,甲乙恰好同时到达B地。已知乙的车速为甲车速的4倍,设甲的速度为xkm/小时,列出方程 ,甲的速度为 ,乙的速度为 。20如图,已知一次函数的图像与反比例函数的图像相交于A、B两点,其中A的横坐标与B的纵坐标都是1。(1)求一次函数的解析式。(2)求OAB的面积。(3)根据图象写出一次函数的值大于反比例值的x的取值范围;21当为何值时,关于的方程的解为非负数.22.若。23、已知,且与成正比例,与成反比例,当时,;当时,(1)求y与x之间的函数关系式;(2)求当时,y的值xyOAB24.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(-2,1)B(1,n)两点;求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例值的x的取值范围;03625、函数 的和函数y = -x + 1,利用图象求方程 的解ABO26.已知直线y = 2x 2 与 双曲线图 交于点A(2,y)、B(m,n)。(1) 求反比例函数的解析式; (2) 求B点的坐标; (3) 写出反比例函数值大于一次函数值的x的取值范围; (4) 求AOB的面积。 27如图RtABO的顶点A是双曲线与在第二象限的交点,ABx轴于B且,(1)求这两个函数的关系式,(2)求直线与双曲线的两个交点A,C的坐标和AOC的面积。28、(2009年兰州)如图14,已知,是一次函数的图象和反比例函数的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及的面积;(3)求方程的解(请直接写出答案);(4)求不等式的解集(请直接写出答案).29. (2009年达州)如图8,直线与反比例函数(0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(2,4),点B的横坐标为4.(1)试确定反比例函数的关系式;(2)求AOC的面积. 30如图,已知直线与双曲线交于两点,且点 的横坐标为(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标 31已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论